Wavelet Toolbox™
User's Guide

Michel Misiti

Yves Misiti

Georges Oppenheim
Jean-Michel Poggi

7

MATLAB

R2021b ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Wavelet Toolbox™ User's Guide
© COPYRIGHT 1997-2021 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

March 1997 First printing New for Version 1.0

September 2000 Second printing Revised for Version 2.0 (Release 12)

June 2001 Online only Revised for Version 2.1 (Release 12.1)
July 2002 Online only Revised for Version 2.2 (Release 13)

June 2004 Online only Revised for Version 3.0 (Release 14)

July 2004 Third printing Revised for Version 3.0

October 2004 Online only Revised for Version 3.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 3.0.2 (Release 14SP2)
June 2005 Fourth printing Minor revision for Version 3.0.2
September 2005 Online only Minor revision for Version 3.0.3 (Release R14SP3)
March 2006 Online only Minor revision for Version 3.0.4 (Release 2006a)
September 2006 Online only Revised for Version 3.1 (Release 2006b)
March 2007 Online only Revised for Version 4.0 (Release 2007a)
September 2007 Online only Revised for Version 4.1 (Release 2007b)
October 2007 Fifth printing Revised for Version 4.1

March 2008 Online only Revised for Version 4.2 (Release 2008a)
October 2008 Online only Revised for Version 4.3 (Release 2008b)
March 2009 Online only Revised for Version 4.4 (Release 2009a)
September 2009 Online only Minor revision for Version 4.4.1 (Release 2009b)
March 2010 Online only Revised for Version 4.5 (Release 2010a)
September 2010 Online only Revised for Version 4.6 (Release 2010b)
April 2011 Online only Revised for Version 4.7 (Release 2011a)
September 2011 Online only Revised for Version 4.8 (Release 2011b)
March 2012 Online only Revised for Version 4.9 (Release 2012a)
September 2012 Online only Revised for Version 4.10 (Release 2012b)
March 2013 Online only Revised for Version 4.11 (Release 2013a)
September 2013 Online only Revised for Version 4.12 (Release 2013b)
March 2014 Online only Revised for Version 4.13 (Release 2014a)
October 2014 Online only Revised for Version 4.14 (Release 2014b)
March 2015 Online only Revised for Version 4.14.1 (Release 2015a)
September 2015 Online only Revised for Version 4.15 (Release 2015b)
March 2016 Online only Revised for Version 4.16 (Release 2016a)
September 2016 Online only Revised for Version 4.17 (Release 2016b)
March 2017 Online only Revised for Version 4.18 (Release 2017a)
September 2017 Online only Revised for Version 4.19 (Release 2017b)
March 2018 Online only Revised for Version 5.0 (Release 2018a)
September 2018 Online only Revised for Version 5.1 (Release 2018b)
March 2019 Online only Revised for Version 5.2 (Release 2019a)
September 2019 Online only Revised for Version 5.3 (Release 2019b)
March 2020 Online only Revised for Version 5.4 (Release 2020a)
September 2020 Online only Revised for Version 5.5 (Release 2020b)
March 2021 Online only Revised for Version 5.6 (Release 2021a)

September 2021 Online only Revised for Version 6.0 (Release 2021b)

Contents

Acknowledgments

Acknowledgments xviii

Wavelets, Scaling Functions, and Conjugate Quadrature
Mirror Filters

1]

Wavelet Families 1-2
Daubechies Wavelets: dbN 1-5
Symlet Wavelets: symN 1-5
Coiflet Wavelets: coifN 1-6
Biorthogonal Wavelet Pairs: biorNr.Nd 1-6
Meyer Wavelet: meyr 1-8
Gaussian Derivatives Family: gaus 1-9
Mexican Hat Wavelet: mexh, 1-10
Morlet Wavelet: morl 1-10
Additional Real Wavelets 1-11
Complex Wavelets 1-11

Wavelet Families and Associated Properties — 1 1-16

Wavelet Families and Associated Properties — II 1-17

Lifting Method for Constructing Wavelets 1-19
Lifting Background e 1-19
Polyphase Representation, 1-21
Split, Predict, and Update 1-21
Haar Wavelet Via Lifting 1-22
Bior2.2 Wavelet Via Lifting 1-23
Add Lifting Step To Haar Lifting Scheme 1-24
Integer-to-Integer Wavelet Transform 1-26

Orthogonal and Biorthogonal Filter Banks 1-28

Scaling Function and Wavelet 1-37

Liftinga Filter Bank 1-40

Add Quadrature Mirror and Biorthogonal Wavelet Filters 1-44

Least Asymmetric Wavelet and Phase 1-54

vi

Contents

Continuous Wavelet Analysis

2|

1-D Continuous Wavelet Analysis 2-2

Continuous Wavelet Analysis of Noisy Sinusoid Using Command Line
Functions 2-3

Continuous Wavelet Analysis of Noisy Sinusoid Using the Wavelet

Analyzer App e 2-6
Importing and Exporting Information from the Wavelet Analyzer App . 2-14
Loading Signals i 2-14
Saving Wavelet Coefficients 2-14
Morse Wavelets 2-16
What Are Morse Wavelets? 2-16
Morse Wavelet Parameters 2-16
Effect of Parameter Values on Morse Wavelet Shape 2-17
Relationship Between Analytic Morse Wavelet and Analytic Signal 2-19
Comparison of Analytic Wavelet Transform and Analytic Signal Coefficients
... 2-20
Recommended Morse Wavelet Settings forthe CWT 2-24
References 2-24
Boundary Effects and the Cone of Influence 2-26
Time-Frequency Analysis and Continuous Wavelet Transform 2-34
Continuous Wavelet Analysis of Modulated Signals 2-45
Remove Time-Localized Frequency Components 2-48
Time-Varying Coherence00, 2-53
Continuous Wavelet Analysis of Cusp Signal 2-57
Complex Continuous Analysis Using the Wavelet Analyzer App 2-60
DFT-Based Continuous Wavelet Analysis Using the Graphical User
Interface e 2-63
Manual Selection of CWT Coefficients 2-67
Two-Dimensional CWT of Noisy Pattern 2-71
2-D Continuous Wavelet Transform App 2-79
2-D Continuous Wavelet Transform 2-79
2-DCWT App Example e 2-79

Discrete Wavelet Analysis

3|

Critically Sampled and Oversampled Wavelet Filter Banks 3-2
Double-Density Wavelet Transform 3-3
Dual-Tree Complex Wavelet Transform 3-5
Dual-Tree Double-Density Wavelet Transforms 3-7

1-D Decimated Wavelet Transforms 3-9
Analysis-Decomposition Functions 3-9
Synthesis-Reconstruction Functions 3-9
Decomposition Structure Utilities 3-9
Denoising and Compressionouiiiiiiinneenn.. 3-9
1-D Analysis Using the Command Line 3-10
1-D Analysis Using the Wavelet Analyzer App 3-16
Importing and Exporting Information from the Wavelet Analyzer App ... 3-27

Fast Wavelet Transform (FWT) Algorithm 3-34
Filters Used to Calculate the DWT and IDWT 3-34
Algorithms 3-36
Why Does Such an Algorithm Exist? 3-40
1-D Wavelet Capabilities 3-43
2-D Wavelet Capabilities 3-44

Border Effects 3-45
Signal Extensions: Zero-Padding, Symmetrization, and Smooth Padding

... 3-45
Practical Considerations 3-46
Arbitrary EXtensions 3-49
Comparing Extension Differences 3-51
Image EXtenSionst 3-52

Nondecimated Discrete Stationary Wavelet Transforms (SWTs) 3-57
e-Decimated DWT 3-57
How to Calculate the e-Decimated DWT: SWT 3-57
Inverse Discrete Stationary Wavelet Transform (ISWT) 3-60
More About SWT 3-61

1-D Stationary Wavelet Transform 3-62
Analysis-Decomposition Functions 3-62
Synthesis-Reconstruction Functions 3-62
1-D Analysis Using the Command Line 3-62
Interactive 1-D Stationary Wavelet Transform Denoising 3-69
Importing and Exporting from the Wavelet AnalysisApp 3-73

Wavelet Changepoint Detection 3-74

Scale-Localized Volatility and Correlation 3-85

R Wave Detectioninthe ECG 3-94

Wavelet Cross-Correlation for Lead-Lag Analysis 3-103

viii

Contents

1-D Multisignal Analysis
1-D Multisignal Analysis — Command Line
1-D Multisignal Analysis Using the Wavelet Analyzer App
Importing and Exporting Information from the Wavelet Analyzer App . .

2-D Discrete Wavelet Analysis
Analysis-Decomposition Functions
Synthesis-Reconstruction Functions
Decomposition Structure Utilities
Denoising and Compression it
Wavelet Image Analysis and Compression
2-D Wavelet Analysis Using the Wavelet Analyzer App
Importing and Exporting Information from the Wavelet Analyzer App . .

2-D Stationary Wavelet Transform
Analysis-Decomposition Function
Synthesis-Reconstruction Function
2-D Analysis Using the Command Line
Interactive 2-D Stationary Wavelet Transform Denoising
Importing and Exporting Information from the Wavelet Analyzer App . .

Shearlet Systems
Shearlets i
Transform Typeot
References e e

3-D Discrete Wavelet Analysis
Performing 3-D Analysis Using the Command Line
Performing 3-D Analysis Using the Wavelet Analyzer App
Importing and Exporting Information from the Wavelet Analyzer App . .

Dual-Tree Complex Wavelet Transforms

Analytic Wavelets Using the Dual-Tree Wavelet Transform

Multifractal Analysis

4

Time-Frequency Gallery
Short-Time Fourier Transform (Spectrogram)
Continuous Wavelet Transform (Scalogram)
Wigner-Ville Distribution
Reassignment and Synchrosqueezing
Constant-Q Gabor Transform
Data-Adaptive Methods and Multiresolution Analysis

Wavelet Packets

S|

About Wavelet Packet Analysis 5-2
1-D Wavelet Packet Analysis 5-5
Starting the Wavelet Packet 1-DTool 5-5
Importinga Signal 5-5
Analyzinga Signal 5-6
Computingthe Best Tree 5-7
Compressing a Signal Using Wavelet Packets 5-8
De-Noising a Signal Using Wavelet Packets 5-10
2-D Wavelet Packet Analysis 5-14
Starting the Wavelet Packet 2-DTool 5-14
Compressing an Image Using Wavelet Packets 5-15
Importing and Exporting from Wavelet Analyzer App 5-18
Saving Informationto Disk 5-18
Loading Information into the Graphical Tools 5-20
Wavelet Packets 5-23
From Wavelets to Wavelet Packets 5-23
Wavelet Packets in Action: An Introduction 5-24
Building Wavelet Packets 0. i 5-26
Wavelet Packet Atoms 5-29
Organizing the Wavelet Packets 5-30
Choosing the Optimal Decomposition 5-31
Some Interesting Subtrees 5-34
Wavelet Packets 2-D Decomposition Structure 5-37
Wavelet Packets for Compression and Denoising 5-37
Introduction to Object-Oriented Features 5-38
Objects in the Wavelet Toolbox Software 5-39
Examples Using Wavelet Packet Tree Objects 5-40
plotand wpviewcf 5-40
drawtree and readtree 5-42
Change Terminal Node Coefficients 5-44
Thresholding Wavelet Packets 5-45
Description of Objects in the Wavelet Toolbox Software 5-48
WTBO Object ... oo e e 5-48
NTREE Object oo e 5-48
Private e 5-49
DTREE ODBJeCt . . oo vttt e e 5-49
WPTREE Object e 5-50
Build Wavelet Tree Objects 5-53
Building a Wavelet Tree Object (WTREE) 5-53
Working With Wavelet Tree Objects (WIREE) 5-53
Building a Right Wavelet Tree Object (RWVTREE) 5-60
Working With Right Wavelet Tree Objects (RWVTREE) 5-61

ix

X

Contents

Building a Wavelet Tree Object (WVTREE),
Working With Wavelet Tree Objects (WVTREE)
Building a Wavelet Tree Object (EDWTTREE)
Working With Wavelet Tree Object (EDWTTREE)

Denoising, Nonparametric Function Estimation, and

6|

Compression
Wavelet Denoising and Nonparametric Function Estimation 6-2
Denoising Methods e 6-3
Soft or Hard Thresholding 6-5
Dealing with Unscaled Noise and Nonwhite Noise 6-6
Wavelet Denoising in Action 6-7
Extension to Image Denoising, 6-11
1-D Wavelet Variance Adaptive Thresholding 6-13
Wavelet Denoising Analysis Measurements 6-16
Wavelet Denoising 6-18
Denoise a Signal with the Wavelet Signal Denoiser 6-25
Translation Invariant Wavelet Denoising with Cycle Spinning 6-36
1-DCycle SpINNINg . ..o vttt 6-36
1-D Adaptive Thresholding of Wavelet Coefficients 6-39
1-D Local Thresholding Using the Wavelet Analyzer App 6-39
Importing and Exporting Information from the Wavelet Analyzer App ... 6-44
Multivariate Wavelet Denoising 6-46
Multivariate Wavelet Denoising — Command Line 6-46
Multivariate Wavelet Denoising Using the Wavelet Analyzer App 6-50
Importing and Exporting from the Wavelet Analyzer App 6-53
Wavelet Multiscale Principal Components Analysis 6-55
Multiscale Principal Components Analysis — Command Line 6-55
Multiscale Principal Components Analysis Using the Wavelet Analyzer App
... 6-58
Importing and Exporting from the Wavelet Analyzer App 6-60
Wavelet Data Compression 6-62
CompPresSiOn SCOTES . . . v vttt e e e e e e e e e 6-64
Wavelet Compression forImages 6-65
Effects of Quantization 6-65
True Compression Methods 6-67
Quantitative and Perceptual Quality Measures 6-68
More Information on True Compression 6-69
2-D Wavelet Compression 6-70
2-D Wavelet Compression Commands 6-70
2-D Wavelet Compression using the Wavelet Analyzer App 6-76

Importing and Exporting from the Wavelet Analyzer App 6-85

Univariate Wavelet Regression 6-86
Regression for Equally-Spaced Observations 6-86
Regression for Randomly-Spaced Observations 6-88
Importing and Exporting Information from the Wavelet Analyzer App ... 6-89

Matching Pursuit

7

Matching Pursuit Algorithms 7-2
Redundant Dictionaries and Sparsity 7-2
Nonlinear Approximation in Dictionaries 7-2
Basic Matching Pursuit 7-3
Orthogonal Matching Pursuit 7-3
Weak Orthogonal Matching Pursuit 7-3

Matching Pursuit e 7-6
Matching Pursuit Dictionary Creation and Visualization 7-6
Orthogonal Matching Pursuitona 1-D Signal 7-8
Electricity Consumption Analysis Using Matching Pursuit 7-9

Matching Pursuit Using Wavelet Analyzer App 7-17
Matching Pursuit 1-D Interactive Tool 7-17
Interactive Matching Pursuit of Electricity Consumption Data 7-29

Code Generation from MATLAB Support in Wavelet Toolbox

8|

Code Generation Support, Usage Notes, and Limitations 8-2
Denoise Signal Using Generated CCode 8-5
Generate Code to Denoisea Signal 8-9
CUDA Code from CWT e 8-11

Special Topics

9

Wavelet Scattering e 9-2
Wavelet Scattering Transform 9-2
Invariance Scale 9-3
Quality Factors and Filter Banks 9-6
In Practice i e 9-8

xi

xii

Contents

Wavelet Scattering Invariance Scale and Oversampling
Empirical Wavelet Transform

Tunable Q-factor Wavelet Transform
Frequency-Domain Scaling

TQWT Algorithm e

Redundancyand Q-factor i
Example: MRA of Audio Signal

Featured Examples — Time-Frequency Analysis

10|

Practical Introduction to Continuous Wavelet Analysis
CWT-Based Time-Frequency Analysis

Time-Frequency Reassignment and Mode Extraction with
Synchrosqueezing i,

Frequency- and Time-Localized Reconstruction from the Continuous
Wavelet Transform

Compare Time-Frequency Content in Signals with Wavelet Coherence

Continuous and Discrete Wavelet Analysis of Frequency Break
Wavelet Packets: Decomposing the Details

Wavelet Analysis of Physiologic Signals

10-61

10-64

10-77

10-81

10-92

Featured Examples — Discrete Multiresolution Analysis

11|

Practical Introduction to Multiresolution Analysis
Wavelet Analysisfor3DData
Multisignal 1-D Wavelet Analysis
Detecting Discontinuities and Breakdown Points
Haar Transforms for Time Series Data and Images
Wavelet Analysis of Financial Data

Image Fusion

11-30

11-41

11-53

11-58

11-70

11-82

Boundary Effects in Real-Valued Bandlimited Shearlet Systems 11-85

Wavelet Packet Harmonic Interference Removal 11-96

12

Denoising Signalsand Images 12-2
Wavelet Interval-Dependent Denoising 12-11
Multivariate Wavelet Denoising 12-26
Multiscale Principal Components Analysis 12-31
Data Compression using 2-D Wavelet Analysis 12-35
Smoothing Nonuniformly Sampled Data 12-41
Two-Dimensional True Compression 12-55

Featured Examples — Machine Learning and Deep Learning

13|

Signal Classification Using Wavelet-Based Features and Support Vector

Machines 13-2
Wavelet Time Scattering for ECG Signal Classification 13-16
Music Genre Classification Using Wavelet Time Scattering 13-26
Wavelet Time Scattering Classification of Phonocardiogram Data 13-35

Wavelet Time Scattering with GPU Acceleration — Spoken Digit

Recognition 13-46
Spoken Digit Recognition with Wavelet Scattering and Deep Learning
.. 13-53
Classify Time Series Using Wavelet Analysis and Deep Learning 13-69
Texture Classification with Wavelet Image Scattering 13-86
Digit Classification with Wavelet Scattering 13-94
Acoustic Scene Recognition Using Late Fusion 13-103
GPU Acceleration of Scalograms for Deep Learning 13-124

xiii

xiv

Contents

Deploy Signal Classifier Using Wavelets and Deep Learning on Raspberry
i 13-136

Deploy Signal Classifier on NVIDIA Jetson Using Wavelet Analysis and
DeepLearning i 13-161

Code Generation for a Deep Learning Simulink Model to Classify ECG
Signals 13-177

Modulation Classification Using Wavelet Analysis on NVIDIA Jetson 13-184

Parasite Classification Using Wavelet Scattering and Deep Learning 13-199

Air Compressor Fault Detection Using Wavelet Scattering 13-213

Fault Detection Using Wavelet Scattering and Recurrent Deep Networks
... 13-221

Anomaly Detection Using Autoencoder and Wavelets 13-229

Generating MATLAB Code from Wavelet Toolbox Wavelet
Analyzer App

14

Generate MATLAB Code for 1-D Decimated Wavelet Denoising and

Compression 14-2
Wavelet 1-D Denoisingo vttt 14-2
Generate MATLAB Code for 2-D Decimated Wavelet Denoising and
Compression 14-9
2-D Decimated Discrete Wavelet Transform Denoising 14-9
2-D Decimated Discrete Wavelet Transform Compression 14-11
Generate MATLAB Code for 1-D Stationary Wavelet Denoising 14-14
1-D Stationary Wavelet Transform Denoising 14-14
Generate MATLAB Code for 2-D Stationary Wavelet Denoising 14-19
2-D Stationary Wavelet Transform Denoising 14-19
Generate MATLAB Code for 1-D Wavelet Packet Denoising and
Compression 14-22
1-D Wavelet Packet Denoising 14-22
Generate MATLAB Code for 2-D Wavelet Packet Denoising and
Compression e 14-25
2-D Wavelet Packet Compression, 14-25

Wavelet Analyzer App Features Summary

A

General Features A-2
Color Coding . ..o vt e A-2
Connection of P1otSo oo A-2
Using the MouSe e A-4
Controlling the Colormapt e A-5
Using Menus A-7
Using the View Axes Button A-8

Continuous Wavelet Tool Features A-9

Wavelet 2-D Tool Features A-10

Wavelet Packet Tool Features (1-Dand2-D) A-11
Coefficients Coloration A-11
Node ACLion ot A-11
Node Label e A-11
Node Action Functionality A-11

Wavelet Display Tool i A-12

Wavelet Packet Display Tool A-13

Acknowledgments

Acknowledgments

Acknowledgments

xviii

The authors wish to express their gratitude to all the colleagues who directly or indirectly contributed
to the making of the Wavelet Toolbox software.

Specifically

* To Pierre-Gilles Lemarié-Rieusset (Evry) and Yves Meyer (ENS Cachan) for their help with wavelet
questions

» To Lucien Birgé (Paris 6), Pascal Massart (Paris 11), and Marc Lavielle (Paris 5) for their help with
statistical questions

» To David Donoho (Stanford) and to Anestis Antoniadis (Grenoble), who give generously so many
valuable ideas

Other colleagues and friends who have helped us enormously are Patrice Abry (ENS Lyon), Samir
Akkouche (Ecole Centrale de Lyon), Mark Asch (Paris 11), Patrice Assouad (Paris 11), Roger Astier
(Paris 11), Jean Coursol (Paris 11), Didier Dacunha-Castelle (Paris 11), Claude Deniau (Marseille),
Patrick Flandrin (Ecole Normale de Lyon), Eric Galin (Ecole Centrale de Lyon), Christine Graffigne
(Paris 5), Anatoli Juditsky (Grenoble), Gérard Kerkyacharian (Paris 10), Gérard Malgouyres (Paris 11),
Olivier Nowak (Ecole Centrale de Lyon), Dominique Picard (Paris 7), and Franck Tarpin-Bernard
(Ecole Centrale de Lyon).

One of our first opportunities to apply the ideas of wavelets connected with signal analysis and its
modeling occurred in collaboration with the team “Analysis and Forecast of the Electrical
Consumption” of Electricité de France (Clamart-Paris) directed first by Jean-Pierre Desbrosses, and
then by Hervé Laffaye, and which included Xavier Brossat, Yves Deville, and Marie-Madeleine Martin.

And finally, apologies to those we may have omitted.
About the Authors

Michel Misiti, Georges Oppenheim, and Jean-Michel Poggi are mathematics professors at Ecole
Centrale de Lyon, University of Marne-La-Vallée and Paris 5 University. Yves Misiti is a research
engineer specializing in Computer Sciences at Paris 11 University.

The authors are members of the “Laboratoire de Mathématique” at Orsay-Paris 11 University France.
Their fields of interest are statistical signal processing, stochastic processes, adaptive control, and
wavelets. The authors' group has published numerous theoretical papers and carried out applications
in close collaboration with industrial teams. For instance:

* Robustness of the piloting law for a civilian space launcher for which an expert system was
developed

» Forecasting of the electricity consumption by nonlinear methods

» Forecasting of air pollution

Notes by Yves Meyer

The history of wavelets is not very old, at most 10 to 15 years. The field experienced a fast and
impressive start, characterized by a close-knit international community of researchers who freely
circulated scientific information and were driven by the researchers' youthful enthusiasm. Even as
the commercial rewards promised to be significant, the ideas were shared, the trials were pooled
together, and the successes were shared by the community.

Acknowledgments

There are lots of successes for the community to share. Why? Probably because the time is ripe.
Fourier techniques were liberated by the appearance of windowed Fourier methods that operate
locally on a time-frequency approach. In another direction, Burt-Adelson's pyramidal algorithms, the
quadrature mirror filters, and filter banks and subband coding are available. The mathematics
underlying those algorithms existed earlier, but new computing techniques enabled researchers to try
out new ideas rapidly. The numerical image and signal processing areas are blooming.

The wavelets bring their own strong benefits to that environment: a local outlook, a multiscaled
outlook, cooperation between scales, and a time-scale analysis. They demonstrate that sines and
cosines are not the only useful functions and that other bases made of weird functions serve to look at
new foreign signals, as strange as most fractals or some transient signals.

Recently, wavelets were determined to be the best way to compress a huge library of fingerprints.
This is not only a milestone that highlights the practical value of wavelets, but it has also proven to be
an instructive process for the researchers involved in the project. Our initial intuition generally was
that the proper way to tackle this problem of interweaving lines and textures was to use wavelet
packets, a flexible technique endowed with quite a subtle sharpness of analysis and a substantial
compression capability. However, it was a biorthogonal wavelet that emerged victorious and at this
time represents the best method in terms of cost as well as speed. Our intuitions led one way, but
implementing the methods settled the issue by pointing us in the right direction.

For wavelets, the period of growth and intuition is becoming a time of consolidation and
implementation. In this context, a toolbox is not only possible, but valuable. It provides a working
environment that permits experimentation and enables implementation.

Since the field still grows, it has to be vast and open. The Wavelet Toolbox product addresses this
need, offering an array of tools that can be organized according to several criteria:

* Synthesis and analysis tools

* Wavelet and wavelet packets approaches

» Signal and image processing

» Discrete and continuous analyses

* Orthogonal and redundant approaches

* Coding, de-noising and compression approaches

What can we anticipate for the future, at least in the short term? It is difficult to make an accurate
forecast. Nonetheless, it is reasonable to think that the pace of development and experimentation will
carry on in many different fields. Numerical analysis constantly uses new bases of functions to encode
its operators or to simplify its calculations to solve partial differential equations. The analysis and
synthesis of complex transient signals touches musical instruments by studying the striking up, when
the bow meets the cello string. The analysis and synthesis of multifractal signals, whose regularity (or
rather irregularity) varies with time, localizes information of interest at its geographic location.
Compression is a booming field, and coding and de-noising are promising.

For each of these areas, the Wavelet Toolbox software provides a way to introduce, learn, and apply
the methods, regardless of the user's experience. It includes a command-line mode and a graphical
user interface mode, each very capable and complementing to the other. The user interfaces help the
novice to get started and the expert to implement trials. The command line provides an open
environment for experimentation and addition to the graphical interface.

In the journey to the heart of a signal's meaning, the toolbox gives the traveler both guidance and
freedom: going from one point to the other, wandering from a tree structure to a superimposed mode,

xix

Acknowledgments

jumping from low to high scale, and skipping a breakdown point to spot a quadratic chirp. The time-
scale graphs of continuous analysis are often breathtaking and more often than not enlightening as to
the structure of the signal.

Here are the tools, waiting to be used.

Yves Meyer
Professor, Ecole Normale Supérieure de Cachan and Institut de France

Notes by Ingrid Daubechies

Wavelet transforms, in their different guises, have come to be accepted as a set of tools useful for
various applications. Wavelet transforms are good to have at one's fingertips, along with many other
mostly more traditional tools.

Wavelet Toolbox software is a great way to work with wavelets. The toolbox, together with the power
of MATLAB® software, really allows one to write complex and powerful applications, in a very short
amount of time. The Graphic User Interface is both user-friendly and intuitive. It provides an
excellent interface to explore the various aspects and applications of wavelets; it takes away the
tedium of typing and remembering the various function calls.

Ingrid C. Daubechies
Professor, Princeton University, Department of Mathematics and Program in Applied and
Computational Mathematics

Wavelets, Scaling Functions, and
Conjugate Quadrature Mirror Filters

* “Wavelet Families” on page 1-2

* “Wavelet Families and Associated Properties — I” on page 1-16

* “Wavelet Families and Associated Properties — II” on page 1-17

+ “Lifting Method for Constructing Wavelets” on page 1-19

* “Orthogonal and Biorthogonal Filter Banks” on page 1-28

* “Scaling Function and Wavelet” on page 1-37

» “Lifting a Filter Bank” on page 1-40

* “Add Quadrature Mirror and Biorthogonal Wavelet Filters” on page 1-44
* “Least Asymmetric Wavelet and Phase” on page 1-54

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

Wavelet Families

The Wavelet Toolbox software includes a large number of wavelets that you can use for both
continuous and discrete analysis. For discrete analysis, examples include orthogonal wavelets
(Daubechies’ extremal phase and least asymmetric wavelets) and B-spline biorthogonal wavelets. For
continuous analysis, the Wavelet Toolbox software includes Morlet, Meyer, derivative of Gaussian, and
Paul wavelets.

The choice of wavelet is dictated by the signal or image characteristics and the nature of the
application. If you understand the properties of the analysis and synthesis wavelet, you can choose a
wavelet that is optimized for your application.

Wavelet families vary in terms of several important properties. Examples include:

* Support of the wavelet in time and frequency and rate of decay.

« Symmetry or antisymmetry of the wavelet. The accompanying perfect reconstruction filters have
linear phase.

* Number of vanishing moments. Wavelets with increasing numbers of vanishing moments result in
sparse representations for a large class of signals and images.

* Regularity of the wavelet. Smoother wavelets provide sharper frequency resolution. Additionally,
iterative algorithms for wavelet construction converge faster.

» Existence of a scaling function, @.

For continuous analysis, the Wavelet Toolbox software analytic wavelet-based analysis for select
wavelets. See cwt and icwt for details. “Inverse Continuous Wavelet Transform” for a basic
theoretical motivation. “CWT-Based Time-Frequency Analysis” on page 10-27 illustrates the use of
the continuous wavelet transform for simulated and real-world signals.

Entering waveinfo at the command line displays a survey of the main properties of available wavelet
families. For a specific wavelet family, use waveinfo with the wavelet family short name. You can
find the wavelet family short names listed in the following table and on the reference page for

waveinfo.
Wavelet Family Short Name (Wavelet Family Name
"haar' Haar wavelet
'db' Daubechies wavelets
'sym' Symlets
"coif! Coiflets
'bior’ Biorthogonal wavelets
'rbio’ Reverse biorthogonal wavelets
'meyr' Meyer wavelet
"dmey' Discrete approximation of Meyer wavelet
‘gaus’ Gaussian wavelets
"'mexh' Mexican hat wavelet (also known as the Ricker wavelet)
'morl’ Morlet wavelet
‘cgau’ Complex Gaussian wavelets

1-2

Wavelet Families

0.8

06

04f

0.2

02+

04k

-06F

08

Wavelet Family Short Name (Wavelet Family Name
‘shan' Shannon wavelets

'fbsp' Frequency B-Spline wavelets
‘cmor' Complex Morlet wavelets
'fk' Fejer-Korovkin wavelets

To display detailed information about the Daubechies’ least asymmetric orthogonal wavelets, enter:

waveinfo('sym')

To compute the wavelet and scaling function (if available), use wavefun.

The Morlet wavelet is suitable for continuous analysis. There is no scaling function associated with
the Morlet wavelet. To compute the Morlet wavelet, you can enter:

[psi,xval] = wavefun('morl',10);
plot(xval,psi); title('Morlet Wavelet');

Morlet Wavelet

For wavelets associated with a multiresolution analysis, you can compute both the scaling function
and wavelet. The following code returns the scaling function and wavelet for the Daubechies’
extremal phase wavelet with 4 vanishing moments.

[phi,psi,xval] = wavefun('db4',10);

subplot(211);
plot(xval,phi);

title('db4 Scaling Function');

subplot(212);
plot(xval,psi);
title('db4 Wavelet');

1-3

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

db4 Scaling Function
T T

db4 Wavelet

A]

05k -

0\//\\ N
2 3 4 5

I
0 1

I
6 7

In discrete wavelet analysis, the analysis and synthesis filters are of more interest than the associated
scaling function and wavelet. You can use wfilters to obtain the analysis and synthesis filters.

Obtain the decomposition (analysis) and reconstruction (synthesis) filters for the B-spline
biorthogonal wavelet. Specify 3 vanishing moments in the synthesis wavelet and 5 vanishing
moments in the analysis wavelet. Plot the filters’ impulse responses.

[LoD,HiD,LoR,HiR] = wfilters('bior3.5"');
subplot(221);

stem(LoD);

title('Lowpass Analysis Filter');
subplot(222);

stem(HiD);

title('Highpass Analysis Filter');
subplot(223);

stem(LoR);

title('Lowpass Synthesis Filter');
subplot(224);

stem(HiR);

title('Highpass Synthesis Filter');

1-4

Wavelet Families

0.5

-0.5
0

0.8

0.6

0.4

0.2

Lowpass Analysis Filter Highpass Analysis Filter

0.5 ¢

ié él 05 s

Lowpass Synthesis Filter Highpass Synthesis Filter

|-

10 15 0 5 10 15

Daubechies Wavelets: dbN

The dbN wavelets are the Daubechies’ extremal phase wavelets. N refers to the number of vanishing
moments. These filters are also referred to in the literature by the number of filter taps, which is 2N.
More about this family can be found in [Dau92] page 195. Enter waveinfo('db') at the MATLAB

command prompt to obtain a survey of the main properties of this family.

& g ncilon pH Viroelet bncilon =l Scaling fundionphl W fursdionpd
i i
i i
us us
os us
o o
o o
o s
s o
i -
- -
o =z + B o = + 5 o = 1o o = 1o
Evscorspsechl on koev—por e Evcorporciion Hgh-pre lier Coeoraped o oo —poves | e Duaeera peelion high-—fors Her
os T [1] oz os T
. "
- _ o o 1 * '!Crml pl Lo g¥ng
Rl Jy i - Yy
o o= -os -us
o i = 3 4+ 3 8 T o i 3 4+ 5 8 T R o + B B A0 42 W
Firc o kon koo Focrvnsciion high—pecs | ler P crvciruacon | v —prres e Facorminudion high-par il
[1 T o3 os os
u“ - P -~ L] - ol b o
[[
o o= EL L]
o 1 2 3 4 3 8 T 8 i oz 3 4 " R ooz + B B 0 A2 W

Daubechies Wavelets db4 on the Left and db8 on the Right

The db1 wavelet is also known as the Haar wavelet. The Haar wavelet is the only orthogonal wavelet
with linear phase. Using waveinfo('haar'), you can obtain a survey of the main properties of this

wavelet.

Symlet Wavelets: symN

The symN wavelets are also known as Daubechies’ least-asymmetric wavelets. The symlets are more
symmetric than the extremal phase wavelets. In symN, N is the number of vanishing moments. These
filters are also referred to in the literature by the number of filter taps, which is 2N. More about
symlets can be found in [Dau92], pages 198, 254-257. Enter waveinfo('sym') at the MATLAB

command prompt to obtain a survey of the main properties of this family.

1-5

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

1-6

5 enling L kon i

WVarsdeire fon pei

Cenlirgg e enphil W e o pad

i i

(1] as
o

-0

L] 5 L L] 5 o
D crpced o | o e e Encorapaziion high-pers i
as
L |
-as

L L
‘Pascors ik ko e e

[

~hs

[
o y
=05
o o1 2 F o+ 5 & T 0D 0z + 5 BT

Symlets sym4 on the Left and sym8 on the Right

02 o+ & B0 2 W o2 o+ B O OID OB i+

Coiflet Wavelets: coifN

Coiflet scaling functions also exhibit vanishing moments. In coifN, N is the number of vanishing
moments for both the wavelet and scaling functions. These filters are also referred to in the literature
by the number of filter coefficients, which is 3N. For the coiflet construction, see [Dau92] pages 258-
259. Enter waveinfo('coif') at the MATLAB command prompt to obtain a survey of the main
properties of this family.

Sl g rciion phi ekt Furdion el Sl g frciion phi Werasket Furdion pad
iP5 L3
1 1 i i
oas as o o3
o o [} [}
-as -as a5 -5
L] (L] s L] L il i L] 5 i i = o= L] = imis = =
Dn:n'qn:llmhf\-n::l-r D crapozit on high=peoes ler D orapoei ion ke r\x:n:l-r Cwcorspoition high=pores filer

e et A

L - BOA0 iz i+ s o : B0 iz i+ 8 O & 8 RIDIZI+ISIE0NDENE [) I:II (LY v gt)
Ful:u'dtdhnh Hler l:..:minmmru.-pzmr Fiac ormirudbon kov—pores e Facomirudion high- pos Hier

S i A

O 2 & &8 8 00 02 i+ 08 oo + B ® II?I-IJ i+ 08 O + 8 RIDIZI+ISIENDENE 02480 002 I+IﬂI=II_MI

Coiflets coif3 on the Left and coif5 on the Right

If s is a sufficiently regular continuous time signal, for large j the coefficient <s, o, k) is

approximated by 2792527 Jk).

If s is a polynomial of degree d, d = N - 1, the approximation becomes an equality. This property is
used, connected with sampling problems, when calculating the difference between an expansion over
the ;, of a given signal and its sampled version.

Biorthogonal Wavelet Pairs: biorNr.Nd

While the Haar wavelet is the only orthogonal wavelet with linear phase, you can design biorthogonal
wavelets with linear phase.

Wavelet Families

0.5

-0.5
0

0.8

0.6

0.4

0.2

Biorthogonal wavelets feature a pair of scaling functions and associated scaling filters — one for
analysis and one for synthesis.

There is also a pair of wavelets and associated wavelet filters — one for analysis and one for
synthesis.

The analysis and synthesis wavelets can have different numbers of vanishing moments and regularity
properties. You can use the wavelet with the greater number of vanishing moments for analysis
resulting in a sparse representation, while you use the smoother wavelet for reconstruction.

See [Dau92] pages 259, 262-285 and [Coh92] for more details on the construction of biorthogonal
wavelet bases. Enter waveinfo('bior') at the command line to obtain a survey of the main
properties of this family.

The following code returns the B-spline biorthogonal reconstruction and decomposition filters with 3
and 5 vanishing moments and plots the impulse responses.

The impulse responses of the lowpass filters are symmetric with respect to the midpoint. The impulse
responses of the highpass filters are antisymmetric with respect to the midpoint.

[LoD,HiD,LoR,HiR] = wfilters('bior3.5");
subplot(221);

stem(LoD);

title('Lowpass Analysis Filter');
subplot(222);

stem(HiD);

title('Highpass Analysis Filter');
subplot(223);

stem(LoR);

title('Lowpass Synthesis Filter');
subplot(224);

stem(HiR);

title('Highpass Synthesis Filter');

Lowpass Analysis Filter Highpass Analysis Filter

05 ®
0 ot
Q@ R R Q@ l
l i 05
El
5 10 15 0 5 10 15
Lowpass Synthesis Filter Highpass Synthesis Filter
1
05
ol 2 T - i) (L o)
T T -05
E
5

Reverse Biorthogonal Wavelet Pairs: rbioNr.Nd

This family is obtained from the biorthogonal wavelet pairs previously described.

1-7

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

You can obtain a survey of the main properties of this family by typing waveinfo('rbio') from the
MATLAB command line.

D compas | Hon scaling funclan ghi

D oo H on wvslst FuncHeon mal

[} 2 a]]] 2 1]]

DscompoalHon kew—pas Absr

Cecompoaiion high-paas Al

a 1 2 3 4 £ L] 7 a]

FacanalrucHon scaling uncion phi Flsconairuction wavslstfuncion pal

L] 2 4]] L] 2 4]]

P o ru cH on | ow—pa s Alber Plasc o ru cliion high—ass Aksr

Reverse Biorthogonal Wavelet rbiol.5

Meyer Wavelet: meyr

Both y and ¢ are defined in the frequency domain, starting with an auxiliary function v (see [Dau92]
pages 117, 119, 137, 152). By typing waveinfo('meyr') at the MATLAB command prompt, you can
obtain a survey of the main properties of this wavelet.

Meyer scaling function Mayer wavelst function
1 1
0.5 05} 1
0 Q F’V\——
—0.5 057}
-5 0 5 -5 a 5
Meyer Wavelet

The Meyer wavelet and scaling function are defined in the frequency domain:

* Wavelet function

Sy = ot 2gin (T (31— o 21 A
y(w) = ("e s1n(2v(2H|w| 1)) if S slols>5
~ 2 3 . 4 8
7(w) = Ceoos(go(ll - 1)) if 5 =lol = 5

and (@)= 0 if o] ¢35

1-8

Wavelet Families

where v(a) = a*(35 - 84a + 70a* - 20a%) a €[0,1]
* Scaling function

b =C if o<

(@) = Coos(Jo(5nlwl - 1)) if <ol <

bw=0 if |w|>%H

By changing the auxiliary function, you get a family of different wavelets. For the required properties
of the auxiliary function v (see“References” for more information). This wavelet ensures orthogonal
analysis.

The function y does not have finite support, but y decreases to 0 when x — =2, faster than any inverse
polynomial

Vn € N, 3C,, such that |y(x)| < Cn(l + |x|2)""
This property holds also for the derivatives
Yk € N,Vn € N, 3Cy p, such that |q/(k)x| < Cy (1 + |x|2) -n

The wavelet is infinitely differentiable.

Note Although the Meyer wavelet is not compactly supported, there exists a good approximation
leading to FIR filters that you can use in the DWT. Enter waveinfo('dmey') at the MATLAB
command prompt to obtain a survey of the main properties of this pseudo-wavelet.

Gaussian Derivatives Family: gaus
2
This family is built starting from the Gaussian function f(x) = C,e™ by taking the p'" derivative of f.

The integer p is the parameter of this family and in the previous formula, C, is such that || f P)|| =1
where f ™ is the p* derivative of f.

You can obtain a survey of the main properties of this family by typing waveinfo('gaus') from the
MATLAB command line.

1-9

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

1-10

0.8

06

0.4

0.2

02k

-0.4
‘8

Wosddal Iureionpali

-08 E L L L N L L L L L -
I B | a 1 2 i 4 5

Gaussian Derivative Wavelet gaus8

Mexican Hat Wavelet: mexh

This wavelet is proportional to the second derivative function of the Gaussian probability density
function. The wavelet is a special case of a larger family of derivative of Gaussian (DOG) wavelets. It
is also known as the Ricker wavelet.

There is no scaling function associated with this wavelet.

Enter waveinfo('mexh') at the MATLAB command prompt to obtain a survey of the main
properties of this wavelet.

You can compute the wavelet with wavefun.
[psi,xval] = wavefun('mexh',10);

plot(xval,psi);
title('Mexican Hat Wavelet');

Mexican Hat Wavelet
T

Morlet Wavelet: morl

Both real-valued and complex-valued versions of this wavelet exist. Enter waveinfo('morl') at the
MATLAB command line to obtain the properties of the real-valued Morlet wavelet.

The real-valued Morlet wavelet is defined as:

Wavelet Families

0.8

06

04f

0.2

02+

04

-06F

08

2
w(x) = Ce X cos(5x)
The constant C is used for normalization in view of reconstruction.
[psi,xval] = wavefun('morl',10);

plot(xval,psi);
title('Real-valued Morlet Wavelet');

Real-valued Morlet Wavelet

The Morlet wavelet does not technically satisfy the admissibility condition..

Additional Real Wavelets

Some other real wavelets are available in the toolbox.

Complex Wavelets

The toolbox also provides a number of complex-valued wavelets for continuous wavelet analysis.
Complex-valued wavelets provide phase information and are therefore very important in the time-

frequency analysis of nonstationary signals.
Complex Gaussian Wavelets: cgau

This family is built starting from the complex Gaussian function

2
f(x) = Cpe™™e™™" by taking the p'* derivative of f. The integer p is the parameter of this family and in

the previous formula, C, is such that

[P ||2 = 1 where f P is the p'* derivative of f.

You can obtain a survey of the main properties of this family by typing waveinfo('cgau') from the

MATLAB command line.

1-11

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

Ml partef funchion pal Imaginary partef funchon pal

Modulus of fundion pal &ngle of Funcion pal

-2F

u;. | -3:.\

Complex Gaussian Wavelet cgau8
Complex Morlet Wavelets: cmor
See [Te098] pages 62-65.

A complex Morlet wavelet is defined by

1 2infex LZ
= — C
w(x) me e fb

depending on two parameters:

* f, is a bandwidth parameter.
* f.is a wavelet center frequency.

You can obtain a survey of the main properties of this family by typing waveinfo('cmor') from the
MATLAB command line.

1-12

Wavelet Families

Faa| part of luncon il Imaginary partof funchon pal
T T T T T T T T T T

-8 - -2 a 2 1 8 a -a -8 -4 -2 a 2 4 a8 a

Mosiulus of funchion pal Engls of uncHn mul

aAafr

] < 1

T & 3 2 o @ 1 & & R TR
Complex Morlet Wavelet morl 1.5-1

Complex Frequency B-Spline Wavelets: fbsp

See [Te098] pages 62-65.

A complex frequency B-spline wavelet is defined by

w(x) = \/fp fix

sinc| —
m
depending on three parameters:

m .
) emecx

* mis an integer order parameter (m = 1).
* f,is a bandwidth parameter.
* f.is a wavelet center frequency.

You can obtain a survey of the main properties of this family by typing waveinfo('fbsp') from the

MATLAB command line.

1-13

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

1-14

Real part o1 function psi Imaginarypart of Lncion pel
osf
os E
Qdr 1 04 1
ozf] ozt]
. - Lw_,_ . AN
ozt] -nzf 1
04 -o4
.11
_O'E 1 1 1 1 1
- -10 o 10 0 -D -10 o 10 0
Modulus of Lncdon psl Angle of Lncton psl
arf 3 2
113 E 2
ast
1
o4t
o
o3 E |
-1H
ozl
ol ==
a -2k
-m -10 o 10 o -] -10 o 10 o

Complex Frequency B-Spline Wavelet fbsp 2-0.5-1

Complex Shannon Wavelets: shan

See [Te098] pages 62-65.

This family is obtained from the frequency B-spline wavelets by setting m to 1.

A complex Shannon wavelet is defined by
_ : 2imfex
w(x) = \/fpsinc(fpx)e
depending on two parameters:

* fpis a bandwidth parameter.
* f,is a wavelet center frequency.

You can obtain a survey of the main properties of this family by typing waveinfo('shan') from the
MATLAB command line.

Wavelet Families

Rad part ol refion pai Imagrary pari ol furetion g
s T T T T
(T3
o4} E w4k
0.2r 1 nap g
0 P Aeryfl 2 M‘l\h.ww a W
-nzf 1 -a3r 1
0.4 -4 1
T
-0.6 1 A . g L .
- =0 [] 1] - 1] =20 =11 [10 20
Modulin ol Lretionpai Erglas ol krction pai
T ar v
2
1
1
[
i
-1
-a
[] -]
- T [] 1 -1 20 -1 [10 20

Complex Shannon Wavelet shan 0.5-1

1-15

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

Wavelet Families and Associated Properties — |

Property

morl

mexh

meyr

haar

dbN

symN

coifN

biorNr.Nd

Crude

Infinitely regular

Arbitrary regularity

Compactly supported
orthogonal

Compactly supported
biorthogonal

Symmetry

Asymmetry

Near symmetry

Arbitrary number of
vanishing moments

Vanishing moments for ¢

Existence of ¢

Orthogonal analysis

Biorthogonal analysis

Exact reconstruction

14

FIR filters

Continuous transform

Discrete transform

Fast algorithm

Explicit expression

For splines

Crude wavelet — A wavelet is said to be crude when satisfying only the admissibility condition.

Regularity — See “General Considerations” in “Choose a Wavelet”.

Orthogonal — See “General Considerations” in “Choose a Wavelet”.

Biorthogonal — See “Biorthogonal Wavelet Pairs: biorNr.Nd” on page 1-6.

Vanishing moments —See “General Considerations” in “Choose a Wavelet”.

Exact reconstruction — See “Reconstruction Filters” in the Wavelet Toolbox Getting Started Guide.

Continuous — See “Continuous and Discrete Wavelet Transforms” in the Wavelet Toolbox Getting

Started Guide.

Discrete — See “Critically-Sampled Discrete Wavelet Transform” in the Wavelet Toolbox Getting

Started Guide.

1-16

Wavelet Families and Associated Properties — Il

Wavelet Families and Associated Properties — II

Property rbioNr.Nd gaus dmey |[cgau cmor fbsp shan

Crude | | [| | |
Infinitely regular | | [| | |

Arbitrary regularity [|

Compactly supported
orthogonal

Compactly supported [|
biorthogonal

Symmetry | | [| | | | |

Asymmetry

Near symmetry

Arbitrary number of [|
vanishing moments

Vanishing moments for ¢

Existence of ¢

Orthogonal analysis

Biorthogonal analysis

Exact reconstruction

|

Q
|
|
|
|

FIR filters

Continuous transform

Discrete transform

Fast algorithm

Explicit expression For splines [] [| | | |

Complex valued | [| | |

Complex continuous | [| | |
transform

FIR-based approximation]

Crude wavelet — A wavelet is said to be crude when satisfying only the admissibility condition.
Regularity — See “General Considerations” in “Choose a Wavelet”.

Orthogonal — See “General Considerations” in “Choose a Wavelet”.

Biorthogonal — See “Biorthogonal Wavelet Pairs: biorNr.Nd” on page 1-6.

Vanishing moments — See “General Considerations” in “Choose a Wavelet”.

Exact reconstruction — See “Reconstruction Filters” in the Wavelet Toolbox Getting Started Guide.

Continuous — See “Continuous and Discrete Wavelet Transforms” in the Wavelet Toolbox Getting
Started Guide.

1-17

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

Discrete — See “Continuous and Discrete Wavelet Transforms” in the Wavelet Toolbox Getting
Started Guide.

FIR filters — See “Filters Used to Calculate the DWT and IDWT” on page 3-34.

1-18

Lifting Method for Constructing Wavelets

Lifting Method for Constructing Wavelets

The so-called first generation wavelets and scaling functions are dyadic dilations and translates of a
single function. Fourier methods play a key role in the design of these wavelets. However, the
requirement that the wavelet basis consist of translates and dilates of a single function imposes some
constraints that limit the utility of the multiresolution idea at the core of wavelet analysis.

The utility of wavelet methods is extended by the design of second generation wavelets via lifting.
Typical settings where translation and dilation of a single function cannot be used include:
* Designing wavelets on bounded domains — This includes the construction of wavelets on an

interval, or bounded domain in a higher-dimensional Euclidean space.

* Weighted wavelets — In certain applications, such as the solution of partial differential equations,
wavelets biorthogonal with respect to a weighted inner product are needed.

» Irregularly-spaced data — In many real-world applications, the sampling interval between data
samples is not equal.

Designing new first generation wavelets requires expertise in Fourier analysis. The lifting method
proposed by Sweldens (see [Swe98] in “References”) removes the necessity of expertise in Fourier
analysis and allows you to generate an infinite number of discrete biorthogonal wavelets starting
from an initial one. In addition to generation of first generation wavelets with lifting, the lifting
method also enables you to design second generation wavelets, which cannot be designed using
Fourier-based methods. With lifting, you can design wavelets that address the shortcomings of the
first generation wavelets.

For more information on lifting, see [Swe98], [Mal98], [StrN96], and [MisMOP03] in “References”.

Lifting Background

The DWT implemented by a filter bank is defined by four filters as described in “Fast Wavelet

Transform (FWT) Algorithm” on page 3-34. Two main properties of interest are

* The perfect reconstruction property

* The link with “true” wavelets (how to generate, starting from the filters, orthogonal or
biorthogonal bases of the space of the functions of finite energy)

To illustrate the perfect reconstruction property, the following filter bank contains two decomposition
filters and two synthesis filters. The decomposition and synthesis filters may constitute a pair of
biorthogonal bases or an orthogonal basis. The capital letters denote the Z-transforms of the filters.

HEHEH

chi
-
hJ
—
hJ
iy
I

1-19

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

This leads to the following two conditions for a perfect reconstruction (PR) filter bank:

H(2)H(z) + G(2)G(z) =2z L *1

and

The first condition is usually (incorrectly) called the perfect reconstruction condition and the second
is the anti-aliasing condition.

The z7L * 1 term implies that perfect reconstruction is achieved up to a delay of one sample less than
the filter length, L. This results if the analysis filters are shifted to be causal.

Lifting designs perfect reconstruction filter banks by beginning from the basic nature of the wavelet
transform. Wavelet transforms build sparse representations by exploiting the correlation inherent in
most real world data. For example, plot the example of electricity consumption over a 3-day period.

load leleccum

plot(leleccum)

grid on

axis tight

title('Electricity Consumption')

Electricity Consumption

LI |
| '

400 ll | F /]

3s0 M) | |
\ F

300 | L\ | \ Iﬂ

/ \
KV '\J_

250 1

2001

150

500 1000 1500 2000 2500 3000 3500 4000

1-20

Lifting Method for Constructing Wavelets

Polyphase Representation

The polyphase representation of a signal is an important concept in lifting. You can view each signal
as consisting of phases, which consist of taking every N-th sample beginning with some index. For
example, if you index a time series from n=0 and take every other sample starting at n=0, you extract
the even samples. If you take every other sample starting from n=1, you extract the odd samples.
These are the even and odd polyphase components of the data. Because your increment between
samples is 2, there are only two phases. If you increased your increment to 4, you can extract 4
phases. For lifting, it is sufficient to concentrate on the even and odd polyphase components. The
following diagram illustrates this operation for an input signal.

12

Xe

Z |2 Xo

where Z denotes the unit advance operator and the downward arrow with the number 2 represents
downsampling by two. In the language of lifting, the operation of separating an input signal into even
and odd components is known as the split operation, or the lazy wavelet.

To understand lifting mathematically, it is necessary to understand the z-domain representation of the
even and odd polyphase components.

The z-transform of the even polyphase component is

Xo(@) = D> x(2n)z™"

The z-transform of the odd polyphase component is

X1(2) = Sx@2n + 1)z"
n

You can write the z-transform of the input signal as the sum of dilated versions of the z-transforms of
the polyphase components.

X(z) = dx@n)z 2+ Sx2n+ Dz = X(2%) + 271X (2%)
n n

Split, Predict, and Update

A single lifting step can be described by the following three basic operations:

1-21

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

» Split — the signal into disjoint components. A common way to do this is to extract the even and
odd polyphase components explained in “Polyphase Representation” on page 1-21. This is also
known as the lazy wavelet.

* Predict — the odd polyphase component based on a linear combination of samples of the even
polyphase component. The samples of the odd polyphase component are replaced by the
difference between the odd polyphase component and the predicted value.

* Update — the even polyphase component based on a linear combination of difference samples
obtained from the predict step.

In practice, a normalization is incorporated for both the predict and update operations.

The following diagram illustrates one lifting step.

X

L

-

Y —— Split

F'
Y
" :--@ >

Haar Wavelet Via Lifting

Using the operations in “Split, Predict, and Update” on page 1-21, you can implement the Haar
wavelet via lifting.

» Split — Divide the signal into even and odd polyphase components

* Predict — Replace x(2n + 1) with d(n) = x(2n + 1) — x(2n). The predict operator is simply x(2n).
* Update — Replace x(2n) with x(2n) + d(n)/2. This is equal to (x(2n) + x(2n + 1))/2.

The predict operator in the Z-domain can be written in the following matrix form:

Xo(2)

[o1 X1(2)

-P(2) 1

with P(2) = 1.

The update operator can be written in the following matrix form:

1-22

Lifting Method for Constructing Wavelets

Xo(2)
X1(2)

1 0

1 S(2)
[-P(2) 1

01

with §(2) = 1/2.

Finally, the update and predict normalization can be incorporated as follows:

V2 (1) [1 SO 1 0]Xo@
0 g0 1 l-Pe 1lxe

You can use liftingScheme to construct a lifting scheme associated with the Haar wavelet.

lscHaar = liftingScheme('Wavelet', 'haar');

disp(lscHaar)
Wavelet : 'haar'
LiftingSteps : [2 x 1] liftingStep
NormalizationFactors : [1.4142 0.7071]
CustomLowpassFilter A

Details of LiftingSteps :

Type: 'predict'
Coefficients: -1
MaxOrder: 0

Type: 'update'
Coefficients: 0.5000
MaxOrder: 0

Note that for convenience, the negative sign is incorporated into the predict lifting step. The
elements of NormalizationFactors, 1.4142 and 0.7071, are the predict and update
normalization factors, respectively. Max0rder gives the highest degree of the Laurent polynomial
which describes the corresponding lifting step. In this case, both are zero because the predict and
update liftings are both described by scalars.

Bior2.2 Wavelet Via Lifting

This example presents the lifting scheme for the bior2. 2 biorthogonal scaling and wavelet filters.

In the Haar lifting scheme, the predict operator differenced the odd and even samples. In this
example, define a new predict operator that computes the average of the two neighboring even
samples. Subtract the average from the intervening odd sample.

din) =x(2n+1) - %[X(Zn) + x(2n + 2)]

In the Z-domain, you can write the predict operator as

Xo(2)

L X1(2)

1 0
I——(l -2)1

2

1-23

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

To obtain the update operator, examine the update operator in “Haar Wavelet Via Lifting” on page 1-
22. The update is defined in such a way that the sum of the approximation coefficients is proportional
to the mean of the input data vector.

> x(n) = %Ea(n)

To obtain the same result in this lifting step, define the update as

1 Lz 1+1)

4 1

1 0

You can use liftingScheme to obtain the lifting scheme.

lscBior = liftingScheme('Wavelet', 'bior2.2');

disp(lscBior)

Wavelet ¢ 'bior2.2'
LiftingSteps : [2 x 1] liftingStep
NormalizationFactors : [1.4142 0.7071]
CustomLowpassFilter N

Details of LiftingSteps :
Type: 'predict'
Coefficients: [-0.5000 -0.5000]
MaxOrder: 1

Type: 'update'

Coefficients: [0.2500 0.2500]
MaxOrder: 0

Add Lifting Step To Haar Lifting Scheme

This example shows how to add an elementary lifting step to a lifting scheme.

Create a lifting scheme associated with the Haar wavelet.

lsc = liftingScheme('Wavelet', 'haar');

disp(lsc)

Wavelet : 'haar'
LiftingSteps : [2 x 1] liftingStep
NormalizationFactors : [1.4142 0.7071]
CustomLowpassFilter N

Details of LiftingSteps :

Type: 'predict'
Coefficients: -1
MaxOrder: 0

Type: 'update'

Coefficients: 0.5000
MaxOrder: 0

1-24

Lifting Method for Constructing Wavelets

Create an update elementary lifting step. Append the step to the lifting scheme.

els = liftingStep('Type', 'update', 'Coefficients',[-1/8 1/8], 'MaxOrder',0);
lscNew = addlift(lsc,els);

disp(lscNew)

Wavelet : 'custom'
LiftingSteps : [3 x 1] liftingStep
NormalizationFactors : [1.4142 0.7071]
CustomLowpassFilter A

Details of LiftingSteps :

Type: 'predict'
Coefficients: -1
MaxOrder: 0

Type: 'update'
Coefficients: 0.5000
MaxOrder: ©
Type: 'update'
Coefficients: [-0.1250 0.1250]
MaxOrder: ©
Obtain the decomposition and reconstruction filters from the new lifting scheme.
[lod,hid,lor,hir] = 1s2filt(lscNew);
Use bswfun to the plot the resulting scaling function and filter.

bswfun(lod, hid, lor,hir, 'plot');

1-25

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

1-26

Analysis scaling function {phiA) Analysis wavelet function | psiA)
1.
1
1
0
0.5
0 1
0.5 2
0 1 2 3 0 0.5 1
Synthesis scalling function (phiS) Synthesis wavelet function (psiS)
1
0
0.5 0.5
-1
0
0 0.5 1 0 1 2 3

Integer-to-Integer Wavelet Transform

In several applications it is desirable to have a wavelet transform that maps integer inputs to integer
scaling and wavelet coefficients. You can accomplish easily using lifting.

Create a lifting scheme associated with the Haar wavelet. Add an elementary lifting step to the lifting
scheme.

lsc = liftingScheme('Wavelet', 'haar');
els liftingStep('Type', 'update', 'Coefficients',[-1/8 1/8]1, 'MaxOrder',0);
lscNew = 1lsc.addlift(els);

Create an integer-valued signal. Obtain the integer-to-integer wavelet transform of the signal from
LWT, using the lifting scheme, with 'Int2Int"' set to true.

rng default

sig = randi(20,16,1);

[ca,cd] = lwt(sig, 'LiftingScheme"',lscNew, 'Int2Int"',true);
Confirm the approximation coefficients are all integers.

max (abs(ca-floor(ca)))

ans = 0

Confirm the detail coefficients are all integers.

Lifting Method for Constructing Wavelets

len = length(cd);
for k=1:len
disp([k, max(abs(cd{k}-floor(cd{k})))1);

end
1 0
2 0
3 0
4 0

Invert the transform and demonstrate perfect reconstruction.

xrec = ilwt(ca,cd, 'LiftingScheme',lscNew, 'Int2Int', true);
max (abs(xrec-sig))

ans =0

1-27

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

Orthogonal and Biorthogonal Filter Banks

1-28

This example shows to construct and use orthogonal and biorthogonal filter banks with the Wavelet
Toolbox software. The classic critically sampled two-channel filter bank is shown in the following

figure.
H l 2 T 2 -

G lz Tz G

Let & and H denote the lowpass and highpass analysis filters and - and /{ denote the corresponding
lowpass and highpass synthesis filters. A two-channel critically sampled filter bank filters the input
signal using a lowpass and highpass filter. The subband outputs of the filters are downsampled by two
to preserve the overall number of samples. To reconstruct the input, upsample by two and then
interpolate the results using the lowpass and highpass synthesis filters. If the filters satisfy certain
properties, you can achieve perfect reconstruction of the input. To demonstrate this, filter an ECG
signal using Daubechies's extremal phase wavelet with two vanishing moments. The example explains
the notion of vanishing moments in a later section.

load wecg;
plot(wecq);
title('ECG Signal')

Orthogonal and Biorthogonal Filter Banks

ECG Signal

1.5 T

%U it (W,

—

0 500 1000 1500 2000 2500

Obtain the lowpass (scaling) and highpass (wavelet) analysis and synthesis filters.
[gtilde,htilde,g,h] = wfilters('db2"');
For this example, set the padding mode for the DWT to periodization. This does not extend the signal.

origmodestatus = dwtmode('status', 'nodisplay');
dwtmode('per', 'nodisplay');

Obtain the level-one discrete wavelet transform (DWT) of the ECG signal. This is equivalent to the
analysis branch (with downsampling) of the two-channel filter bank in the figure.

[lowpass,highpass] = dwt(wecg,gtilde,htilde);

Upsample and interpolate the lowpass (scaling coefficients) and highpass (wavelet coefficients)
subbands with the synthesis filters and demonstrate perfect reconstruction.

xrec = idwt(lowpass,highpass,g,h);

max (abs (wecg-xrec))

subplot(2,1,1)

plot(wecg); title('Original ECG Waveform')
subplot(2,1,2)

plot(xrec); title('Reconstructed ECG Waveform');

ans =

1-29

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

1-30

1.3658e-12
5 Original ECG Waveform
1 = -
0 A a
L | i
I ™4 I~ A II,.J,] r"|l \
- 1 - -
_2 1 1 1 1
0 500 1000 1500 2000 2600
5 Reconstructed ECG Waveform
b i
0 A a
L | i
Il el M I A II,.;,J r"|l \
- 1 - -
_2 1 1 1 1
0 500 1000 1500 2000 2600

The analysis and synthesis filters for the 'db2' wavelet are just time reverses of each other. You can
see this by comparing the following.

scalingFilters
waveletFilters

scalingFilters

0.4830
0.4830

0.8365
0.8365

waveletFilters =

-0.1294
-0.1294

-0.2241
-0.2241

0.2241
0.2241

0.8365
0.8365

[flip(gtilde); gl
[flip(htilde); h]

-0.1294
-0.1294

-0.4830
-0.4830

This is the case with all orthogonal wavelet filter banks. The orthogonal wavelet families supported by
the Wavelet Toolbox are 'dbN’, 'fkN', 'symN', and 'coifN' where N is a valid filter number.

Instead of providing dwt with the filters in the previous example, you the string 'db2' instead. Using
the wavelet family short name and filter number, you do not have to correctly specify the analysis and

synthesis filters.

Orthogonal and Biorthogonal Filter Banks

[lowpass,highpass] = dwt(wecg, 'db2");
xrec = idwt(lowpass,highpass, 'db2"');

The filter number in the Daubechies's extremal phase and least asymmetric phase wavelets ('db' and
'sym') refers to the number of vanishing moments. Basically, a wavelet with N vanishing moments
removes a polynomial of order N-1 in the wavelet coefficients. To illustrate this, construct a signal
which consists of a linear trend with additive noise.

n = (0:511)/512;
X = 2*n+0.2*randn(size(n));

plot(n,x)
o Original ECG Waveform
1 - -
|
U =| 1 |J(JI l‘{j L IIHI -
v ,,"'ur‘]lr_) .H-J'uf"l |
.1 - -
_2 i i i i
1] 500 1000 1500 2000 2500
3 T T T T T T T

| it
gt it

-1
1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A linear trend is a polynomial of degree 1. Therefore, a wavelet with two vanishing moments removes
this polynomial. The linear trend is preserved in the scaling coefficients and the wavelet coefficients
can be regarded as consisting of only noise. Obtain the level-one DWT of the signal with the 'db2'
wavelet (two vanishing moments) and plot the coefficients.

[A,D] = dwt(x, 'db2');

subplot(2,1,1)

plot(A); title('Scaling Coefficients');
subplot(2,1,2)

plot(D); title('Wavelet Coefficients');

1-31

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

1-32

Scallng Caeﬂ' icients

m“ﬂ"“v’ "

) PRI CL

!
.J rwl !
D’Lr'dllln Wy |

0 50 100 150 200 250 300
1 . . Wavelet C?eﬁicients . .
05F J‘ 'l .
0 ‘L‘ 4 ‘“ I| ﬁ(\"l Mlpﬁu l,mwwﬂ mm M Wd"'l L, W(‘ 'ﬂfl,.jw 1
05t]
"o 50 100 150 200 250 300

You can use dwt and idwt to implement a two-channel orthogonal filter bank, but it is often more
convenient to implement a multi-level two-channel filter bank using wavedec. The multi-level DWT
iterates on the output of the lowpass (scaling) filter. In other words, the input to the second level of

the filter bank is the output of the lowpass filter at level 1. A two-level wavelet filter bank is
illustrated in the following figure.

Orthogonal and Biorthogonal Filter Banks

I
N
-
%]

G(2) 2

At each successive level, the number of scaling and wavelet coefficients is downsampled by two so
the total number of coefficients are preserved. Obtain the level three DWT of the ECG signal using
the 'sym4' orthogonal filter bank.

[C,L] = wavedec(wecg,3, 'symd"');

The number of coefficients by level is contained in the vector, L. The first element of L is equal to 256,
which represents the number of scaling coefficients at level 3 (the final level). The second element of
L is the number of wavelet coefficients at level 3. Subsequent elements give the number of wavelet
coefficients at higher levels until you reach the final element of L. The final element of L is equal to
the number of samples in the original signal. The scaling and wavelet coefficients are stored in the
vector C in the same order. To extract the scaling or wavelet coefficients, use appcoef or detcoef.
Extract all the wavelet coefficients in a cell array and final-level scaling coefficients.

wavcoefs = detcoef(C,L, 'dcells"');
a3 = appcoef(C,L, 'symd"');

You can plot the wavelet and scaling coefficients at their approximate positions.

cfsmatrix = zeros(numel(wecq),4);
cfsmatrix(1l:2:end,1) = wavcoefs{1l};
cfsmatrix(l:4:end,2) = wavcoefs{2};
cfsmatrix(1l:8:end,3) = wavcoefs{3};
cfsmatrix(1:8:end,4) = a3;

subplot(5,1,1)

plot(wecg); title('Original Signal');

axis tight;

for kk = 2:4
subplot (5,1, kk)
stem(cfsmatrix(:,kk-1), 'marker', 'none', 'ShowBaselLine', 'off');
ylabel(['D' num2str(kk-1)1);
axis tight;

end

subplot(5,1,5);

1-33

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

1-34

stem(cfsmatrix(:,end), 'marker', 'none','ShowBaseLine','off');
ylabel('A3"); xlabel('Sample');
axis tight;

Original Signal
A T e
ok . -\,/“41.—.”,_.» «‘(\‘-ﬂ—'\ e |
] J’“{"\f‘"{ﬂ"' + er ﬂ"’"' T & */—"Jr !/?
B I

4'1}1} Evﬂ'l} B'I}l} '12{:'3 '14'3{? 1600 1800 2000
1F T T T T T T T T L

- 0O} 1 ¥ El =t 1 ¥ I ¥ J I e

o4 i
el i i i i i i i i i i

200 400 600 800 1000 1200 1400 1600 1800 2000
T T T T T T T T T
-‘I - -

E L L4]I bl I|' .|I .||) \ll b I| [I| Iy il

1E i 1 1 1 1 1 1 1 1 || -
200 400 600 800 1000 1200 1400 1600 1800 2000
2 T T T T T T T T T T

5.l) |]

[y '.||I [Jl gttt 1p e 'I||. |I|. |II]I II I|| I'I ||| III || r
= 1 I I I I I I I I 17

200 400 600 800 1000 1200 1400 1600 1800 2000
T T T T

- ok -, I||| LTI ||I| ail i|i|||||.|||l..lu| p— —

< il r| ||' | | R |‘ W
- I I I I I I I I

2‘3’3’ 4'3{? 600 800 1000 1200 1400 1600 1800 2000
Sample

Because the critically sampled wavelet filter bank downsamples the data at each level, the analysis
must stop when you have only one coefficient left. In the case of the ECG signal with 2048 samples,

this must occur when £ = log, 2048,

[C,L] = wavedec(wecg,log2(numel(wecg)), 'symd');
fprintf('The number of coefficients at the final level is %d. \n',L(1));

The number of coefficients at the final level is 1.

If you wish to implement an orthogonal wavelet filter bank without downsampling, you can use
modwt.

ecgmodwt = modwt(wecg, 'symd’,3);
ecgmra = modwtmra(ecgmodwt, 'sym4');
subplot(5,1,1);

plot(wecg); title('Original Signal');

title('MODWT-Based Multiresolution Analysis');
for kk = 2:

subplot (5,1, kk)

plot(ecgmra(kk-1,:));

ylabel(['D' num2str(kk-1)1);
end

Orthogonal and Biorthogonal Filter Banks

subplot(5,1,5);
plot(ecgmra(end,:));
ylabel('A3"); xlabel('Sample');

MODWT -Based Mu I‘tlresulutlun Analysis

2
AT o, u
wrww* «w H»M»w
% 2500
-2 T T T T
1_1_ T
D'D L i
o 500 1000 1500 2000 2500
1 T T T T
3 f At bttt |
T 500 1000 1500 2000 2500
0.5F T T T T =
s TR
05k ' ' ' g
0 1500 2000 2500
1 T T
2 ok " lmr\.ﬂ‘”“f’“" . 1
< umlll*ﬂr-ﬂ Y lr/ﬂ'l J||r"' i i .lrwr.,jh,.iru_ﬂ,lmwﬂ.
T 54:-:} m-m 1500 2000 2500

Sample

In a biorthogonal filter bank, the synthesis filters are not simply time-reversed versions of the
analysis filters. The family of biorthogonal spline wavelet filters are an example of such filter banks.

[LoD,HiD,LoR,HiR] = wfilters('bior3.5"');

If you examine the analysis filters (LoD,HiD) and the synthesis filters (LoR,HiR), you see that they are
very different. These filter banks still provide perfect reconstruction.

[A,D] = dwt(wecg,LoD,HiD);
xrec = idwt(A,D,LoR,HiR);
max (abs (wecg-xrec))

ans =

6.6613e-16

Biorthogonal filters are useful when linear phase is a requirement for your filter bank. Orthogonal
filters cannot have linear phase with the exception of the Haar wavelet filter. If you have Signal
Processing Toolbox™, you can look at the phase responses for an orthogonal and biorthogonal pair of
wavelet filters.

1-35

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

[Lodb6,Hidb6] = wfilters('db6');

[PHIdb6,W] = phasez(Hidb6,1,512);

PHIbior35 = phasez(HiD,1,512);

figure;

subplot(2,1,1)

plot(W./(2*pi),PHIdb6); title('Phase Response for db6 Wavelet');
grid on;

xlabel('Cycles/Sample'); ylabel('Radians');

subplot(2,1,2)

plot(W./(2*pi),PHIbior35); title('Phase Response for bior3.5 Wavelet');
grid on;

xlabel('Cycles/Sample'); ylabel('Radians');

Phase Response for db6 Wavelet

Radians
o
f
/

o 0.05 0.1 015 0.2 025 0.3 D.35 0.4 0.45 0.
Cycles/Sample
Phase Response for bior3.5 Wavelet

or '““'x,x__ .
H"‘“-w____

0 6k H-_______ 4
@ T

o 101 H_,____ 4

H__
H__
-15 I I i I I I I I I .
1] 0.05 0.1 015 0.2 0.25 0.3 0.35 0.4 0.45 0.

Cycles/Sample

Set the dwtmode back to the original setting.

dwtmode(origmodestatus, 'nodisplay');

1-36

Scaling Function and Wavelet

Scaling Function and Wavelet

This example uses wavefun to demonstrate how the number of vanishing moments in a biorthogonal
filter pair affects the smoothness of the corresponding dual scaling function and wavelet. While this
example uses wavefun for a biorthogonal wavelet, 'bior3.7"', you can also use wavefun to obtain
orthogonal scaling and wavelet functions.

First, obtain the scaling and wavelet filters and look at the number of vanishing moments in the
wavelets. This is equivalent to looking at the number of zeros at -1+i0 in the dual filter.

[LoD,HiD,LoR,HiR] = wfilters('bior3.7"');

If you have the Signal Processing Toolbox™, you can use zplane to look at the number of zeros at
-1+4i0 for both the decomposition and reconstruction filters.

zplane(LoD); title('Decomposition Filter');

Decomposition Filter

i)
A

1.5 7T]

Imaginary Part
[
= n
T T
O
gr.n

i

=

on
T
i

i
=
T
i

0.5 1 15 2 25 3
Real Part

L
n
i
=
i
=
n
=

figure;
zplane(LoR); title('Reconstruction Filter');

1-37

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

1-38

Reconstruction Filter

0.8 . |

0.4 ; _]

02t : " :

Imaginary Part
(o]
o

Real Part

If you zoom in on the region around -1+i0, you find there are 7 zeros in the decomposition filter and 3
zeros in the reconstruction filter. This has important consequences for the smoothness of the
corresponding scaling functions and wavelets. For biorthogonal wavelets, the more zeros at -1+i0 in
the lowpass filter, the smoother the opposite scaling function and wavelet is. In other words, more
zeros in the decomposition filter implies a smoother reconstruction scaling function and wavelet.
Conversely, more zeros in the reconstruction filter implies a smoother decomposition scaling function
and wavelet.

Use wavefun to confirm this. For orthogonal and biorthogonal wavelets, wavefun works by reversing
the Mallat algorithm. Specifically, the algorithm starts with a single wavelet or scaling coefficient at
the coarsest resolution level and reconstructs the wavelet or scaling function to the specified finest
resolution level. Generally, 8 to 10 levels is sufficient to get an accurate representation of the scaling
function and wavelet.

[phiD,psiD,phiR,psiR] = wavefun('bior3.7',10);
subplot(2,1,1)

plot([phiD' phiR'1); grid on;

title('Bior3.7 Scaling Functions');
legend('Decomposition', 'Reconstruction');
subplot(2,1,2)

plot([psiD' psiR'1); grid on;

title('Bior3.7 Wavelets');
legend('Decomposition', 'Reconstruction');

Scaling Function and Wavelet

Biord.T Scaling Functions

2 T T T T
rJ ' Decomposition
I" \\ Reconstruction
1k f |I i
|/"*~‘
_ﬁf'r\" I ﬁ\ L
0 - L | \ e .'Ir |
\ J |._' |
o o/
_1 i i i i i i i
0 2000 4000 &O00 8OO0 10000 12000 14000 16000
Biord.7 Wavelets
2 r T T T Ilrl T T T T B
H Decompositicn
ik | | Reconstruction | |
A")
N
: A o~ |
_ | | l y
nl Ih\l' ||1 |
I
ok 1 1 1 III.iH | | | i
0 2000 4000 &000 BOOO 10000 12000 14000 16000

Because there are more than twice the number of zeros at -1+i0 for the lowpass decomposition filter,
the dual (reconstruction) scaling function and wavelet are much smoother than the analysis
(decomposition) scaling function and wavelet.

1-39

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

Lifting a Filter Bank

1-40

This example shows how to use lifting to progressively change the properties of a perfect
reconstruction filter bank. The following figure shows the three canonical steps in lifting: split,
predict, and update.

W —— Split

P
— @ T > D
X
4]
The first step in lifting is simply to split the signal into its even- and odd-indexed samples. These are
called polyphase components and that step in the lifting process is often referred to as the "lazy"

lifting step because you really are not doing that much work. You can do this in MATLAB™ by
creating a "lazy" lifting scheme using liftingScheme with default settings.

LS = liftingScheme;
Use the lifting scheme to obtain the level 1 wavelet decomposition of a random signal.

X = randn(8,1);
[ALazy,DLazy] = lwt(x,'LiftingScheme',LS, 'Level',1);

MATLAB indexes from 1 so ALazy contains the odd-indexed samples of x and DLazy contains the
even-indexed samples. Most explanations of lifting assume that the signal starts with sample 0, so
ALazy would be the even-indexed samples and DLazy the odd-indexed samples. This example follows
that latter convention. The "lazy" wavelet transform treats one half of the signal as wavelet
coefficients, DLazy, and the other half as scaling coefficients, ALazy. This is perfectly consistent
within the context of lifting, but a simple split of the data does really sparsify or capture any relevant
detail.

The next step in the lifting scheme is to predict the odd samples based on the even samples. The
theoretical basis for this is that most natural signals and images exhibit correlation among
neighboring samples. Accordingly, you can "predict" the odd-indexed samples using the even-indexed
samples. The difference between your prediction and the actual value is the "detail" in the data
missed by the predictor. That missing detail comprises the wavelet coefficients.

In equation form, you can write the prediction step as dj(n) = dj —1(n) = P(aj - 1) where dj —1(n) are
the wavelet coefficients at the finer scale and a; — 1 is some number of finer-scale scaling coefficients.
P(-) is the prediction operator.

Add a simple (Haar) prediction step that subtracts the even (approximation) coefficient from the odd
(detail) coefficient. In this case the prediction operator is simply (— 1)a = 1(n). In other words, it

predicts the odd samples based on the immediately preceding even sample.

ElemLiftStep = liftingStep('Type', 'predict', 'Coefficients',-1, 'MaxOrder"',0);

Lifting a Filter Bank

The above code says "create an elementary prediction lifting step using a polynomial in z with the
highest power 2°. The coefficient is -1. Update the lazy lifting scheme.

LSN = addlift(LS,ElemLiftStep);

Apply the new lifting scheme to the signal.
[A,D] = lwt(x,'LiftingScheme',LSN, 'Level',1);

Note that the elements of A are identical to those in ALazy. This is expected because you did not
modify the approximation coefficients.

[A ALazy]
ans = 4x2

0.5377 0.5377
-2.2588 -2.2588
0.3188 0.3188
-0.4336 -0.4336

If you look at the elements of D{1}, you see that they are equal to DLazy{1}-ALazy.

Dnew = DLazy{l}-AlLazy;
[Dnew D{1}]

ans = 4x2

1.2962 1.2962
3.1210 3.1210
-1.6265 -1.6265
0.7762 0.7762

Compare Dnew to D. Imagine an example where the signal was piecewise constant over every two
samples.

v=1_[1-11-11-11;
u = repelem(v,2)
u = 1x12
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

Apply the new lifting scheme to u.

[Au,Du] = lwt(u,'LiftingScheme',LSN, 'Level',k1);
Du{1}

ans = 6x1

[cNoNoNOoNO]

1-41

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

1-42

You see that all the Du are zero. This signal has been compressed because all the information is now
contained in 6 samples instead of 12 samples. You can easily reconstruct the original signal

urecon = ilwt(Au,Du, 'LiftingScheme',LSN);
max(abs(u(:)-urecon(:)))

ans = 0

In your prediction step, you predicted that the adjacent odd sample in your signal had the same value
as the immediately preceding even sample. Obviously, this is true only for trivial signals. The wavelet
coefficients capture the difference between the prediction and the actual values (at the odd samples).
Finally, use the update step to update the even samples based on differences obtained in the
prediction step. In this case, update using the following aj(n) = a; - 1(n) + dj - 1(n)/2. This replaces
each even-indexed coefficient by the arithmetic average of the even and odd coefficients.

elsUpdate
LSupdated

liftingStep('Type', 'update', 'Coefficients',1/2, '"MaxOrder',0);
addlift (LSN,elsUpdate);

Obtain the wavelet transform of the signal with the updated lifting scheme.
[A,D] = lwt(x, ' 'LiftingScheme',LSupdated, 'Level',1);

If you compare A to the original signal, x, you see that the signal mean is captured in the
approximation coefficients.

[mean(A) mean(x)]
ans = 1x2

-0.0131 -0.0131

In fact, the elements of A are easily obtainable from x by the following.

n=1;

for ii = 1:2:numel(x)
meanz(n) = mean([x(ii) x(ii+1)]);
n = n+l;

end

Compare meanz and A. As always, you can invert the lifting scheme to obtain a perfect reconstruction
of the data.

xrec = ilwt(A,D, 'LiftingScheme',LSupdated);
max (abs(x-xrec))

ans = 2.2204e-16

It is common to add a normalization step at the end so that the energy in the signal (¢% norm) is
preserved as the sum of the energies in the scaling and wavelet coefficients. Without this
normalization step, the energy is not preserved.

norm(x,2)"2

ans = 11.6150

Lifting a Filter Bank

norm(A,2)”2+norm(D{1},2)"2

ans = 16.8091

Add the necessary normalization step.

LSsteps = LSupdated.LiftingSteps;

LSscaled = liftingScheme('LiftingSteps',LSsteps, 'NormalizationFactors',[sqrt(2)]1);
[A,D] = lwt(x,'LiftingScheme',LSscaled, 'Level',k1);

norm(A,2)"2+norm(D{1},2)"2

ans = 11.6150

Now the ¢% norm of the signal is equal to the sum of the energies in the scaling and wavelet
coefficients. The lifting scheme you developed in this example is the Haar lifting scheme.

Wavelet Toolbox™ supports many commonly used lifting schemes through 1iftingScheme with
predefined predict and update steps, and normalization factors. For example, you can obtain the Haar
lifting scheme with the following.

lshaar = liftingScheme('Wavelet', 'haar');

To see that not all lifting schemes consist of single predict and update lifting steps, examine the
lifting scheme that corresponds to the bior3. 1 wavelet.

lsbior3 1 = liftingScheme('Wavelet', 'bior3.1")

lsbior3 1 =
Wavelet : 'bior3.1'
LiftingSteps : [3 x 1] liftingStep
NormalizationFactors : [2.1213 0.4714]
CustomLowpassFilter N

Details of LiftingSteps :

Type: 'update'

Coefficients: -0.3333
MaxOrder: -1

Type: 'predict'
Coefficients: [-0.3750 -1.1250]
MaxOrder: 1
Type: 'update'
Coefficients: 0.4444
MaxOrder: O

1-43

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

Add Quadrature Mirror and Biorthogonal Wavelet Filters

1-44

This example shows how to add an orthogonal quadrature mirror filter (QMF) pair and biorthogonal
wavelet filter quadruple to Wavelet Toolbox™ . While Wavelet Toolbox™ already contains many of the
most widely used orthogonal and biorthogonal wavelet families, including the Daubechies' extremal-
phase, the Daubechies' least-asymmetric phase, the coiflet, the Fejér-Korovkin filters, and
biorthogonal spline wavelets, you can easily add your own filters and use the filter in any of the
discrete wavelet or wavelet packet algorithms.

This example adds the Beylkin(18) QMF filter pair to the toolbox and shows how to subsequently use
the filter in discrete wavelet analysis. The example then demonstrates how to verify the necessary
and sufficient conditions for the QMF pair to constitute a scaling and wavelet filter. After the adding
the QMF pair, the example adds the nearly-orthogonal biorthogonal wavelet quadruple based on the
Laplacian pyramid scheme of Burt and Adelson (Table 8.4 on page 283 in [1]).

Adding a QMF

First, you must have some way of obtaining the coefficients. In this case, here are the coefficients for
the lowpass (scaling) Beylkin(18) filter. You only need a valid scaling filter. The wfilters function
creates the corresponding wavelet filter for you.

beyl = [9.93057653743539270E-02
4.24215360812961410E-01
6.99825214056600590E-01
4.49718251149468670E-01
-1.10927598348234300E-01
-2.64497231446384820E-01
2.69003088036903200E-02
1.55538731877093800E-01
-1.75207462665296490E-02
-8.85436306229248350E-02
1.96798660443221200E-02
4.29163872741922730E-02
-1.74604086960288290E-02
-1.43658079688526110E-02
1.00404118446319900E-02
1.48423478247234610E-03
-2.73603162625860610E-03
6.40485328521245350E-04] ;

Save the Beylkin(18) filter and add the new filter to the toolbox. To add to the toolbox an orthogonal
wavelet that is defined in a MAT-file, the name of the MAT-file and the variable containing the filter
coefficients must match. The name must be less than five characters long.

save beyl beyl

Use wavemngr to add the wavelet filter to the toolbox. Define the wavelet family name and the short
name used to access the filter. The short name must be the same name as the MAT-file. Define the
wavelet type to be 1. Type 1 wavelets are orthogonal wavelets in the toolbox. Because you are adding
only one wavelet in this family, define the NUMS variable input to wavemngr to be an empty string.

familyName = 'beylkin';
familyShortName = 'beyl';
familyWaveType = 1;
familyNums ='"
fileWaveName = 'beyl.mat';

Add Quadrature Mirror and Biorthogonal Wavelet Filters

Add the wavelet using wavemngr.

wavemngr('add', familyName, familyShortName, familyWaveType, familyNums, fileWaveName)
Verify that the wavelet has been added to the toolbox.

wavemngr('read")

ans = 19x35 char array

'"Haar ->->haar '
'Daubechies ->->db '
'Symlets ->->sym '
'Coiflets ->->coif '
'BiorSplines ->->bpior '
'ReverseBior ->->rbio '
'Meyer ->->meyr '
'DMeyer ->->dmey '
'Gaussian ->->gaus '
'Mexican hat ->->mexh '
'Morlet ->->morl '
'"Complex Gaussian ->->cgau '
'Shannon ->->shan '
'"Frequency B-Spline->->fbsp '
"Complex Morlet ->->cmor '
'"Fejer-Korovkin ->->Tk '
"beylkin ->->peyl '

You can now use the wavelet to analyze signals or images. For example, load an ECG signal and
obtain the MODWT of the signal down to level four using the Beylkin(18) filter.

load wecg
wtecg = modwt(wecg, 'beyl’',4);

Load a box image, obtain the 2-D DWT using the Beylkin(18) filter. Show the level-one diagonal detail
coefficients.

load xbox

[C,S] = wavedec2(xbox,1, 'beyl');
[H,V,D] = detcoef2('all',(C,S,1);
subplot(2,1,1)

imagesc(xbox)

axis off

title('Original Image')
subplot(2,1,2)

imagesc(D)

axis off

title('Level-One Diagonal Coefficients')

1-45

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

1-46

Original Image

Level-One Diagonal Coefficients

Finally, verify that the new filter satisfies the conditions for an orthogonal QMF pair. Obtain the
scaling (lowpass) and wavelet (highpass) filters.

[Lo,Hi] = wfilters('beyl"');

Sum the lowpass filter coefficients to verify that the sum equals 2. Sum the wavelet filter
coefficients and verify that the sum is 0.

sum(Lo)
ans = 1.4142
sum(Hi)

ans = -1.9873e-16

Verify that the autocorrelation of the scaling and wavelet filters at all even nonzero lags is 0.

[Clow,lags] = xcorr(Lo,L0,10);

Chigh = xcorr(Hi,Hi,10);

subplot(2,1,1)

stem(lags,Clow, 'markerfacecolor',[0 @ 1])
grid on

title('Autocorrelation of Scaling Filter')
subplot(2,1,2)

stem(lags,Chigh, 'markerfacecolor',[0 0 1])
grid on

title('Autocorrelation of Wavelet Filter')

Add Quadrature Mirror and Biorthogonal Wavelet Filters

Autocorrelation of Scaling Filter

1 T T T T . T

10]] 4 -2 0 2 4 G & 10
1 Autocorrelation of Wavelet Filter
051 .
e—g—e—"» he ? e— " _o—g—»
0 ry » & L - ry
N&F .
1 1 1 i 1 1 1 1 1 1
10] 5 4 -2 0 2 4 G] 10

Note that the autocorrelation values in both plots is zero for nonzero even lags. Show that the cross-
correlation of the scaling and wavelet filter is zero at all even lags.

[xcr,lags] = xcorr(Lo,Hi,10);

figure

stem(lags,xcr, 'markerfacecolor',[0 0 1])
title('Cross-correlation of QMF filters')

1-47

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

1-48

Cross-correlation of QMF filters
Dz T T T T T T T T T

o1r T

0.05T 7

015t Py o -

-10 -8] -4 -2 0 2 4 G 8 10

The final criterion states the sum of squared magnitudes of the Fourier transforms of scaling and
wavelet filters at each frequency is equal to 2. In other words, let G(f) be the Fourier transform of the
scaling filter and H(f) be the Fourier transform of the wavelet filter. The following holds for all f:

|H(f) |2 + | G(f) |2 = 2. The DFT version of this equality is: |Gkam0dN|2 + |H2mkm0dN|2 = 2 for any m.
Check this for the Beylkin(18) filter with m = 0.

N = numel(Lo);
LoDFT fft(Lo);
HiDFT fft(Hi);
k = 0:N-1;
m=0;
sumDFTmags

abs (LoDFT (1+mod (2”m*k,N))).”~2+abs (HiDFT (1+mod (2”m*k,N)))."2

sumDFTmags = 18x1

.0000
. 0000
.0000
. 0000
.0000
. 0000
. 0000
.0000
.0000
.0000

NNNNNNNNNN

Add Quadrature Mirror and Biorthogonal Wavelet Filters

All the values are equal to 2 as expected. To understand why these filters are called quadrature
mirror filters, visualize the squared-magnitude frequency responses of the scaling and wavelet filters.

nfft = 512;

F =0:1/nfft:1/2;

LoDFT = fft(Lo,nfft);

HiDFT = fft(Hi,nfft);

figure

plot(F,abs(LoDFT(1:nfft/2+1)).”2, 'DisplayName', 'Scaling Filter")
hold on
plot(F,abs(HiDFT(1:nfft/2+1)).”2,'r', 'DisplayName', 'Wavelet Filter")
xlabel('Frequency"')

ylabel('Squared Magnitude')

title('Beylkin(18) QMF Filter Pair')

grid on

plot([1/4 1/4]1, [0 2],'k','HandleVisibility', 'off")

legend show

Beylkin(18) QMF Filter Pai

2 T T T = T T T
Scaling Filter
1871 Wavelet Filter | 7
16 7

-l
-
T

=
3
T

Squared Magnitude
[’
oo =i

=
=]
T

041

0.2 7

D i i i i i i i i
0 g0os 01 015 02 0256 03 035 04 045 05

Frequency

Note the magnitude responses are symmetric, or mirror images, of each other around the quadrature
frequency of 1/4.

The following code removes the Beylkin(18) wavelet filter.

wavemngr('del', familyShortName);
delete('beyl.mat')

1-49

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

Adding a Biorthogonal Wavelet

Adding a biorthogonal wavelet to the toolbox is similar to adding a QMEF. You provide valid lowpass
(scaling) filters pair used in analysis and synthesis. The wfilters function will generate the
highpass filters.

To be recognized by wfilters, the analysis scaling filter must be assigned to the variable Df, and
the synthesis scaling filter must be assigned to the variable Rf. The biorthogonal scaling filters do
not have to be of even equal length. The output biorthogonal filter pairs created will have even equal
lengths. Here are the scaling function pairs of the nearly-orthogonal biorthogonal wavelet quadruple
based on the Laplacian pyramid scheme of Burt and Adelson.

Df
Rf

[-1 5125 -1]/20*sqrt(2);
[-3 -15 73 170 73 -15 -3]/280*sqrt(2);

Save the filters to a MAT-file.

save burt Df Rf

Use wavemngr to add the biorthogonal wavelet filters to the toolbox. Define the wavelet family name
and the short name used to access the filter. The short name must match the name of the MAT-file.
Since the wavelets are biorthogonal, set the wavelet type to be 2. Because you are adding only one
wavelet in this family, define the NUMS variable input to wavemngr to be an empty string.

familyName = 'burtAdelson’;
familyShortName = 'burt’;
familyWaveType = 2;

familyNums ='"
fileWaveName = 'burt.mat';

wavemngr('add', familyName, familyShortName, familyWaveType, familyNums, fileWaveName)

Verify that the biorthogonal wavelet has been added to the toolbox.
wavemngr('read"')

ans = 19x35 char array

'"Haar ->->haar '
'Daubechies ->->db '
'Symlets ->->sym '
'Coiflets ->->coif '
'BiorSplines ->->pior '
'ReverseBior ->->rbio '
'Meyer ->->meyr '
'DMeyer ->->dmey '
'Gaussian ->->gaus '
'Mexican hat ->->mexh '
'Morlet ->->morl '
"Complex Gaussian ->->cgau '
'Shannon ->->shan '
'Frequency B-Spline->->fbsp '
"Complex Morlet ->->cmor '
'Fejer-Korovkin ->->fk '
"burtAdelson ->->purt '

Add Quadrature Mirror and Biorthogonal Wavelet Filters

You can now use the wavelet within the toolbox. Create an analysis DWT filter bank using the burt
wavelet. Confirm the DWT filter bank is biorthogonal. Plot the magnitude frequency responses of the
wavelet bandpass filters and coarsest resolution scaling function.

fb = dwtfilterbank('Wavelet', 'burt');

isBiorthogonal(fb)
ans = logical
1
freqz(fb)
DWT Filter Bank
burt
12 T T T T T T T T T
D1
D2
10 D3l
D4
D5
D& |
8 D7
L AT
=
= 6]
()]
©
=

0 005 01 015 02 025 03 035 04 045 05
Mormalized Frequency (cycles/sample)

Obtain the wavelet and scaling functions of the filter bank. Plot the wavelet and scaling functions at
the coarsest scale.

[fb_phi,t] scalingfunctions(fb);
[fb_psi,~] wavelets(fb);
subplot(2,1,1)

plot(t,fb phi(end,:))

axis tight

grid on

title('Analysis - Scaling')
subplot(2,1,2)

plot(t,fb psi(end,:))

axis tight

grid on

title('Analysis - Wavelet')

1-51

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

Analysis - Scaling

01 b / 1

/

0.05

S00 <400 300 =200 100 0 100 200 300 400 50O

Analysis - Wavelet

|

|

04 F f 1
/

{
0 T\ / | s~
|"I

\

i i i i i I
-0.1
S00 <400 300 =200 100 0 100 200 300 400 50O

Create a synthesis DWT filter bank using the burt wavelet. Compute the framebounds.

fb2 = dwtfilterbank('Wavelet', 'burt', 'FilterType', 'Synthesis', 'Level', 4);
[synthesisLowerBound, synthesisUpperBound] = framebounds(fb2)

synthesisLowerBound = 0.9800
1.0509

synthesisUpperBound

Obtain the lowpass and highpass analysis and synthesis filters associated with burt. Note the output
filters are all of equal even length. Confirm the lowpass filter coefficients sum to sqrt(2) and the
highpass filter coefficients sum to 0.

[LoD,HiD,LoR,HiR] = wfilters('burt');
[LoD' HiD' LoR' HiR']

ans = 8x4

0 0.0152 -0.0152 0

0 -0.0758 -0.0758 0
-0.0707 -0.3687 0.3687 -0.0707
0.3536 0.8586 0.8586 -0.3536
0.8485 -0.3687 0.3687 0.8485
0.3536 -0.0758 -0.0758 -0.3536
-0.0707 0.0152 -0.0152 -0.0707

sum([(LoD'/sqrt(2)) HiD' (LoR'/sqrt(2)) HiR'])

1-52

Add Quadrature Mirror and Biorthogonal Wavelet Filters

ans = 1x4

1.0000 -0.0000 1.0000 0

Remove the Burt-Adelson filter from the Toolbox.

wavemngr('del', familyShortName);
delete('burt.mat')

References

[1] Daubechies, I. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied
Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1992.

1-53

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

Least Asymmetric Wavelet and Phase

For a given support, the orthogonal wavelet with a phase response that most closely resembles a
linear phase filter is called least asymmetric. Symlets are examples of least asymmetric wavelets.
They are modified versions of the classic Daubechies db wavelets. In this example you will show that
the order 4 symlet has a nearly linear phase response, while the order 4 Daubechies wavelet does
not.

First plot the order 4 symlet and order 4 Daubechies scaling functions. While neither is perfectly
symmetric, note how much more symmetric the symlet is.

[phi_sym,~,xval sym]=wavefun('sym4',10);
[phi_db,~,xval dbl=wavefun('db4',10);
subplot(2,1,1)

plot(xval sym,phi sym)

title('sym4 - Scaling Function')

grid on

subplot(2,1,2)

plot(xval db,phi _db)

title('db4 - Scaling Function')

grid on
1 symd - Scaling Function
5 T T T T T T
1r /™ 1
/N
/ Ay
05F / N\, .
— "'//' "‘.'
0 — —~__/ T
DE i i i i i i
0 1 2 3 4 5 & 7
db4 - Scaling Function
C .:' u T T T T T]
1 I.-"' _1
D51 / E. T
.".I-r |
/ \
oF // S
AN v -
05 i i i i i i
o 1 2 3 4 5 8 7

Generate the filters associated with the order 4 symlet and Daubechies wavelets.

scal sym = symaux(4,sqrt(2));
scal _db = dbaux(4,sqrt(2));

Least Asymmetric Wavelet and Phase

Compute the frequency response of the scaling synthesis filters.

freqz(scal sym);

[h_sym,w sym] =
= freqz(scal db);

[h db,w db]

To avoid visual discontinuities, unwrap the phase angles of the frequency responses and plot them.
Note how well the phase angle of the symlet filter approximates a straight line.

h sym u = unwrap(angle(h_sym));
h db u = unwrap(angle(h _db));

figure

plot(w sym/pi,h sym u,"'.")

hold on

plot(w sym([1 end])/pi,h_sym u([1l end]),'r")
grid on

xlabel('Normalized Frequency (x \pi rad/sample)')
ylabel('Phase (radians)')

legend('Phase Angle of Frequency Response', 'Straight Line')
title('Symlet Order 4 - Phase Angle')

Symilet Order 4 - Phase Angle

Phase Angle of Frequency Response
Straight Line

Fhase (radians)

-14 :
0 01 02 03 04 05 06 07 08 09 1

Mormalized Frequency (x « rad/sample)

figure

plot(w db/pi,h db u,'.")

hold on

plot(w_db([1 end])/pi,h_db u([1l end]),'r")

grid on

xlabel('Normalized Frequency (x \pi rad/sample)')
ylabel('Phase (radians)')

1-55

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

legend('Phase Angle of Frequency Response', 'Straight Line')
title('Daubechies Order 4 - Phase Angle')

Daubechies Order 4 - Phase Angle

0 T T

Phase Angle of Frequency Response
Straight Line

Fhase (radians)

0 01 02 03 04 05 06 07 08 09 1
Mormalized Frequency (x « rad/sample)

The sym4 and db4 wavelets are not symmetric, but the biorthogonal wavelet is. Plot the scaling
function associated with the bior3.5 wavelet. Compute the frequency response of the synthesis
scaling filter for the wavelet and verify that it has linear phase.

[~,~,phi bior r,~,xval bior]=wavefun('bior3.5',10);
figure

plot(xval bior,phi bior r)

title('bior3.5 - Scaling Function')

grid on

1-56

Least Asymmetric Wavelet and Phase

bior3.5 - Scaling Function
0.8 T T . . .
0.7 | ,/\ -
|
[
061 7
I
0.5 | \ |
' |
0.4 .
|
0.3 7
. H
02r ,'I || 1
| \
\
01r IIl \ i
D i I/ i i i
0 2 4 6 8 10 12

wfilters('bior3.5");

[LoD bior,HiD bior,LoR bior,HiR bior]
[h_bior,w bior] = freqz(LoR bior);
unwrap (angle(h bior));

h bior u =
figure
plot(w bior/pi,h bior u,"'.")
hold on

plot(w bior([1 end])/pi,h bior u([1l end]),'r")

grid on

xlabel('Normalized Frequency (x \pi rad/sample)')
ylabel('Phase (radians)"')

legend('Phase Angle of Frequency Response', 'Straight Line')

title('Biorthogonal 3.5 - Phase Angle')

1-57

1 Wavelets, Scaling Functions, and Conjugate Quadrature Mirror Filters

Biorthogonal 3.5 - Phase Angle

Phase Angle of Frequency Response
2 rF Straight Line -

Fhase (radians)

0 01 02 03 04 05 06 07 08 09 1
Mormalized Frequency (x « rad/sample)

See Also
dbaux | symaux

1-58

Continuous Wavelet Analysis

* “1-D Continuous Wavelet Analysis” on page 2-2

* “Continuous Wavelet Analysis of Noisy Sinusoid Using Command Line Functions” on page 2-3
* “Continuous Wavelet Analysis of Noisy Sinusoid Using the Wavelet Analyzer App” on page 2-6
* “Importing and Exporting Information from the Wavelet Analyzer App” on page 2-14

* “Morse Wavelets” on page 2-16

* “Boundary Effects and the Cone of Influence” on page 2-26

* “Time-Frequency Analysis and Continuous Wavelet Transform” on page 2-34

* “Continuous Wavelet Analysis of Modulated Signals” on page 2-45

* “Remove Time-Localized Frequency Components” on page 2-48

* “Time-Varying Coherence” on page 2-53

* “Continuous Wavelet Analysis of Cusp Signal” on page 2-57

* “Complex Continuous Analysis Using the Wavelet Analyzer App” on page 2-60

+ “DFT-Based Continuous Wavelet Analysis Using the Graphical User Interface” on page 2-63

» “Two-Dimensional CWT of Noisy Pattern” on page 2-71

+ “2-D Continuous Wavelet Transform App” on page 2-79

2 Continuous Wavelet Analysis

1-D Continuous Wavelet Analysis

2-2

Note

This page is no longer recommended. See “Continuous and Discrete Wavelet Transforms”.

The Wavelet Toolbox software enables you to perform a continuous wavelet analysis of your
univariate or bivariate 1-D input signals. You can perform continuous wavelet analyses at the
command line or with the app which you access by typing waveletAnalyzer at the command line.

Key features include:

Continuous wavelet transform (CWT) of a 1-D input signal using real-valued and complex-valued
wavelets. The Wavelet Toolbox software features a CWT algorithm, cwt, which is based on the
correlation of the signal with an analyzing analytic wavelet, .

Inverse CWT of 1-D input signal. For select analyzing wavelets, you can invert the CWT to
reconstruct a time and scale-localized approximation to your input signal. See icwt for details.

Wavelet cross spectrum and coherence. You can use wcoherence to compute the wavelet cross
spectrum and coherence between two time series. The wavelet cross spectrum and coherence can
reveal localized similarities between two time series in time and scale. See “Compare Time-
Frequency Content in Signals with Wavelet Coherence” on page 10-64 for examples.

In this section, you'll learn how to

Load a signal

Perform a continuous wavelet transform of a signal
Produce a plot of the coefficients

Produce a plot of coefficients at a given scale

Produce a plot of local maxima of coefficients across scales
Select the displayed plots

Switch from scale to pseudo-frequency information

Zoom in on detail

Display coefficients in normal or absolute mode

Choose the scales at which analysis is performed

Since you can perform analyses either from the command line or using the Wavelet Analyzer app, this
section has subsections covering each method.

The final subsection discusses how to exchange signal and coefficient information between the disk
and the graphical tools.

Continuous Wavelet Analysis of Noisy Sinusoid Using Command Line Functions

Continuous Wavelet Analysis of Noisy Sinusoid Using
Command Line Functions

1.5

This example involves a noisy sinusoidal signal.

0.5

-1.5

EIIJL'II 400 Etl.if.:l BIIJD 1000
1 Load a signal.
From the MATLAB prompt, type
load noissin;
You now have the signal noissin in your workspace:

whos

Name Size Bytes Class
noissin 1x1000 8000 double array

2 Perform a Continuous Wavelet Transform.
Use the cwt command. Type
¢ = cwt(noissin);

The arguments to cwt specify the signal to be analyzed. The returned argument c contains the
coefficients at various scales. In this case, ¢ is a 80-by-1000 matrix with each row corresponding
to a single scale.

2-3

2 Continuous Wavelet Analysis

2-4

scales a

Plot the coefficients.

The cwt command accepts a fourth argument. This is a flag that, when present, causes cwt to
produce a plot of the absolute values of the continuous wavelet transform coefficients.

The cwt command can accept more arguments to define the different characteristics of the
produced plot. For more information, see the cwt reference page.

c = cwt(noissin,1:48,'db4"', 'plot');

A plot appears.

Absolute Values of Ca,b Coefficientsfora= 12345 ...

200 400 600 800 1000
time (or space) b

Of course, coefficient plots generated from the command line can be manipulated using ordinary
MATLAB graphics commands.

Choose scales for the analysis.

The second argument to cwt gives you fine control over the scale levels on which the continuous
analysis is performed. In the previous example, we used all scales from 1 to 48, but you can
construct any scale vector subject to these constraints:

» All scales must be real positive numbers.

* The scale increment must be positive.

* The highest scale cannot exceed a maximum value depending on the signal.

Let's repeat the analysis using every other scale from 2 to 128. Type

Continuous Wavelet Analysis of Noisy Sinusoid Using Command Line Functions

scales a

c = cwt(noissin,2:2:128,'db4"', 'plot');

A new plot appears:

Absolute Values of Ca,b Coefficients fora= 246 810 ...

122
114
106
98
a0
g2
T4
66
58
50
42
34
26
18
10

200 400 600 800 1000
time (or space) b

This plot gives a clearer picture of what's happening with the signal, highlighting the periodicity.

2-5

2 Continuous Wavelet Analysis

Continuous Wavelet Analysis of Noisy Sinusoid Using the
Wavelet Analyzer App
This example shows how to use Continuous Wavelet 1-D tool to analyze a noisy sinusoidal signal.
1 Start the Continuous Wavelet 1-D Tool. From the MATLAB prompt, type
waveletAnalyzer

The Wavelet Analyzer appears.

4 Wavelet Analyzer - o x

File Window Help

One-Dimensional pecialized Tools 1D

SWT Denaising 1-D
Wavelet 1-D
Density Estimation 1-D
Wavelet Packet 1D
Regression Estimation 1-D
Continuous Wavelet 1-D
Wavelet Coefficients Selection 1-D
Complex Continuous Wavelet 1-D
Matching Pursuit 1-D

Two-Dimensional

Wavelet2D
Specialized Tools 2-D
Wavelet Packet 2D
True Compression 2-D
Continuous Wavelet Transform 2-D
SWT Denoising 2D

Three-Dimensional Wavelet Coefficients Selection 2-D

Wavelet3D Image Fusion

Multiple 10
Wultisignal Analysis 1-D
Wultivariate Denoising

Nuttiscale Princ. Comp. Analysis

Close

Click the Continuous Wavelet 1-D menu item.

The continuous wavelet analysis tool for 1-D signal data appears.

2-6

Continuous Wavelet Analysis of Noisy Sinusoid Using the Wavelet Analyzer App

) Continuous Wavelet 1-D i =10 x|
File Wiew Insert Tools ‘Window Help

Data [Size] I
Wavelet Ihaar -

| Sampling Period: I ‘

Scale Setti

[Step by Step Mode =
Min (> 0) [
Step (> 0) |—
Max l—

Analpze

New Eoetficients Line:

BefreshMarima llines

Selected Axes
I | Coefficients
¥ | Coefficients Line
¥ | Hiasima [lines

+] Sales " Frequencies

Ci ion Mode
[init + by scale + abs =
Colormap m
Nb. Colors B | | I 128
Brightness = | + |
X | ¥ | XYa A X= <= | =
Centern (in —I—I Info History I Wiew Axes Close |
R T R Y= {4

2 Load a signal.
At the MATLAB command prompt, type
load noissin;

In the Continuous Wavelet 1-D tool, select File > Import from Workspace. When the Import
from Workspace dialog box appears, select the noissin variable. Click OK to import the noisy
sinusoid signal.

The default value for the sampling period is equal to 1 (second).
3 Perform a Continuous Wavelet Transform.

To start our analysis, let's perform an analysis using the db4 wavelet at scales 1 through 48, just
as we did using command line functions in the previous section.

In the upper right portion of the Continuous Wavelet 1-D tool, select the db4 wavelet and
scales 1-48.

2-7

2 Continuous Wavelet Analysis

=10l x|

Data (Size) | noissin (1000)
Yavelet fdb =l | ||—— Select db4

Sampling Period I 1

Scale Settings

Step by Step Mode =l
Min (=0 | 1
Step (= 0) I 1| >:- Select scales 1 1o 48 in steps of 1
Max (<= 256 | 48

Analyze

:

4 Click the Analyze button.

After a pause for computation, the tool displays the coefficients plot, the coefficients line plot
corresponding to the scale a = 24, and the local maxima plot, which displays the chaining across
scales (from a = 48 down to a = 1) of the coefficients local maxima.

Analyzed Signal (length = 1000)
T T T

A 1 1 1 1 il

| |
100 200 300 400 500 E00 700 800 900 1000
Ca b Coefficients - Colorstion mode: int + by scale + abs

Scale of calors from M to MAX
Coefficients Line - Cajb for scale a = 24 (frequency = 0.030)

0 WV\[\WAWV\I\W\/WW\,N\WM
100 200 300 400 00 Foo 800 800 1000

1] B0
Local Maxima Lines

D S S ———

L7 13 %35 % 92 & L @4 0§ 7 3]
100 200 300 400 500 600 700 200 00 1000

5 View Wavelet Coefficients Line.

Select another scale a = 40 by clicking in the coefficients plot with the right mouse button. See
step 9 to know, more precisely, how to select the desired scale.

Click the New Coefficients Line button. The tool updates the plot.

2-8

Continuous Wavelet Analysis of Noisy Sinusoid Using the Wavelet Analyzer App

Coefficients Line - Ca b for scale & = 40 (freguency = 0.018)

100 200 300 400 a00 =0] aa 200 00 1000

View Maxima Line.

Click the Refresh Maxima Line button. The local maxima plot displays the chaining across
scales of the coefficients local maxima from a = 40 down to a = 1.

i
i
l*
|
|
|
|

100 200 300 400 =00 (=0H] oo 200 900 1000

Hold down the right mouse button over the coefficients plot. The position of the mouse is given
by the Info frame (located at the bottom of the screen) in terms of location (X) and scale (Sca).

2-9

2 Continuous Wavelet Analysis

Analyzed Signal (length = 10007

100 200 300 400 SO0 B0 oo 200 00 1000
Ca b Coefficients - Coloration mode: init + by scale + abs

|h| 1] “l

M1 AR TR,
|1." *1|| .. |'” 1"'1 i} 'lhuh |H“11!h|'| h \'h 'ﬂLw ! " “ Wm!

IIJ'|.TI|I L 4

— : : |

Zcale of colars from MM to b
Coefficierts Line - Ca b for scale a = 40 (frequency = 0.013)

2]]]]]]]]]

100 200 300 400 00 BO0 oo a0o 900 1000
Local Maxima Lines

i
i
l*
|
|
|
|

100 200 300 400 00 (E0]H] oo =01 A00 4000

7 Switch from scale to Pseudo-Frequency Information.

Using the option button on the right part of the screen, select Frequencies instead of Scales.
Again hold down the right mouse button over the coefficients plot, the position of the mouse is
given in terms of location (X) and frequency (Frq) in Hertz.

2-10

Continuous Wavelet Analysis of Noisy Sinusoid Using the Wavelet Analyzer App

Analyzed Signal (length = 1000

100 200 300 400 SO0 EO0 o0 a0 00 1000
Ca,b Coefficients - Colaoration mode: init + by scale + abs

! \ lhl |

in““l l,.“" 1‘#“ Ml th," ! ‘ll& |L.|"h‘.:| n\h‘i*ﬂkn ”' l{r “" 1

[; : i

Scale of colars from kI to kDX
Coefficients Line - Ca b for scale 5 =40 (freguency = 0.018)

100 200 300 400 00 GO0 oo 200 0o 1000
Local Maxima Lines

|
|
[
|
(
|

. N SFN 8§ 8 ¥ | % 9 ¥y I 1
100 200 300 400 a0d BO0 aa a00 00 1000

This facility allows you to interpret scale in terms of an associated pseudo-frequency, which
depends on the wavelet and the sampling period..

8 Deselect the last two plots using the check boxes in the Selected Axes frame.

2-11

2 Continuous Wavelet Analysis

Analyzed Signal (length = 1000

4 - I
| | | 1 | 1 | 1 1

100 a0 300 1000

I
' “l i ' | "" “'\ M’ ” \

| il i

| M AN gL 8

I 11
_ ;

Drag a rubber band box (by holding down the left mouse button) over the portion of the signal

you want to magnify.

DDb CDE%P::EiIEntS -4(9 Einratinﬁnn%de: ||$rP + by scaﬁle + ahs

|

45
43
40
37
34
il
28
25
22
19
16

Scale of colors from Wik to kA

9 Zoom in on detail.

Analyzed Signal (length = 10007

goa 300

|]er|ts -%&Draﬂnﬁnn%de: |r?rP + by scaﬁle + abs

10 Click the X+ button (located at the bottom of the screen) to zoom horizontally only.

[) v (30 | ey DO A= S
[|- |[xv-]| on Info [v = History [ee. ||| 5% 0088

2-12

Continuous Wavelet Analysis of Noisy Sinusoid Using the Wavelet Analyzer App

The Continuous Wavelet 1-D tool enlarges the displayed signal and coefficients plot (for more
information on zooming, see “Connection of Plots” on page A-2 in the Wavelet Toolbox User's
Guide).

Analyzed Signal (lendgth = 10007

G0 =1 oo 73]
Ea 4] Cu:ueffigients Cu:ul-:urai’u:un made:; init + Ey zcale + aabs

'l‘l..“.‘..\uch ." "’ (N .,”' ”I

— ;
Scale of colors from ik to ks

As with the command line analysis on the preceding pages, you can change the scales or the
analyzing wavelet and repeat the analysis. To do this, just edit the necessary fields and click the
Analyze button.

11 View normal or absolute coefficients.

The Continuous Wavelet 1-D tool allows you to plot either the absolute values of the wavelet
coefficients, or the coefficients themselves.

More generally, the coefficients coloration can be done in several different ways. For more details
on the Coloration Mode, see “Controlling the Coloration Mode” on page A-6.

Choose either one of the absolute modes or normal modes from the Coloration Mode menu. In
normal modes, the colors are scaled between the minimum and maximum of the coefficients. In
absolute modes, the colors are scaled between zero and the maximum absolute value of the
coefficients.

2-13

2 Continuous Wavelet Analysis

Importing and Exporting Information from the Wavelet
Analyzer App

2-14

The Continuous Wavelet 1-D tool in the Wavelet Analyzer app lets you import information from and
export information to disk.

You can

* Load signals from disk into the Continuous Wavelet 1-D tool.
* Save wavelet coefficients from the Continuous Wavelet 1-D tool to disk.

Loading Signals

To load a signal you have constructed in your MATLAB workspace into the Continuous Wavelet 1-D
tool, save the signal in a MAT-file (with extension mat or other).

For instance, suppose you've designed a signal called warma and want to analyze it in the
Continuous Wavelet 1-D tool.

save warma warma
The workspace variable warma must be a vector.
sizwarma = size(warma)

sizwarma =
1 1000

To load this signal into the Continuous Wavelet 1-D tool, use the menu option File > Load Signal.
A dialog box appears that lets you select the appropriate MAT-file to be loaded.

Note The first one-dimensional variable encountered in the file is considered the signal. Variables
are inspected in alphabetical order.

Saving Wavelet Coefficients

The Continuous Wavelet 1-D tool lets you save wavelet coefficients to disk. The toolbox creates a MAT-
file in the current folder with the extension wcl and a name you give it.

To save the continuous wavelet coefficients from the present analysis, use the menu option File >
Save > Coefficients.

A dialog box appears that lets you specify a folder and filename for storing the coefficients.
Consider the example analysis:
File > Example Analysis > with haar at scales [1:1:64] - Cantor curve.

After saving the continuous wavelet coefficients to the file cantor.wc1l, load the variables into your
workspace:

Importing and Exporting Information from the Wavelet Analyzer App

load cantor.wcl
whos

-mat

Name Size Bytes Class

coefs 64x2188 1120256 double array
scales 1x64 512 double array
wname 1x4 8 char array

Variables coefs and scales contain the continuous wavelet coefficients and the associated scales.
More precisely, in the above example, coefs is a 64-by-2188 matrix, one row for each scale; and
scales is the 1-by-64 vector 1:64. Variable wname contains the wavelet name.

2-15

2 Continuous Wavelet Analysis

Morse Wavelets

2-16

In this section...

“What Are Morse Wavelets?” on page 2-16

“Morse Wavelet Parameters” on page 2-16

“Effect of Parameter Values on Morse Wavelet Shape” on page 2-17

“Relationship Between Analytic Morse Wavelet and Analytic Signal” on page 2-19
“Comparison of Analytic Wavelet Transform and Analytic Signal Coefficients” on page 2-20
“Recommended Morse Wavelet Settings for the CWT” on page 2-24

“References” on page 2-24

What Are Morse Wavelets?

Generalized Morse wavelets are a family of exactly analytic wavelets. Analytic wavelets are complex-
valued wavelets whose Fourier transforms are supported only on the positive real axis. They are
useful for analyzing modulated signals, which are signals with time-varying amplitude and frequency.
They are also useful for analyzing localized discontinuities. The seminal paper for generalized Morse
wavelets is Olhede and Walden [1]. The theory of Morse wavelets and their applications to the
analysis of modulated signals is further developed in a series of papers by Lilly and Olhede [2], [3],
and [4]. Efficient algorithms for the computation of Morse wavelets and their properties were
developed by Lilly [5].

The Fourier transform of the generalized Morse wavelet is

2
P
Wp J(w) = Uw)ap, yw y e~
where U(w) is the unit step, ap, , is a normalizing constant, P is the time-bandwidth product, and y
characterizes the symmetry of the Morse wavelet. Much of the literature about Morse wavelets uses
B, which can be viewed as a decay or compactness parameter, rather than the time-bandwidth

product, p?= By. The equation for the Morse wavelet in the Fourier domain parameterized by and y
is

w?

¥s \(w) = Ulw)ag, ywPe™
For a detailed explanation of the parameterization of Morse wavelets, see [2].

By adjusting the time-bandwidth product and symmetry parameters of a Morse wavelet, you can
obtain analytic wavelets with different properties and behavior. A strength of Morse wavelets is that
many commonly used analytic wavelets are special cases of a generalized Morse wavelet. For
example, Cauchy wavelets have y = 1 and Bessel wavelets are approximated by 8 = 8 and y = 0.25.
See “Generalized Morse and Analytic Morlet Wavelets”.

Morse Wavelet Parameters

As previously mentioned, Morse wavelets have two parameters, symmetry and time-bandwidth
product, which determine the wavelet shape and affect the behavior of the transform. The Morse
wavelet gamma parameter, y, controls the symmetry of the wavelet in time through the demodulate

Morse Wavelets

skewness [2]. The square root of the time-bandwidth product, P, is proportional to the wavelet
duration in time. For convenience, the Morse wavelets in cwt and cwtfilterbank are
parameterized as the time-bandwidth product and gamma. The duration determines how many

oscillations can fit into the time-domain wavelet’s center window at its peak frequency. The peak
1

Py
7|
The (demodulate) skewness of the Morse wavelet is equal to 0 when gamma is equal to 3. The Morse

wavelets also have the minimum Heisenberg area when gamma is equal to 3. For these reasons, cwt
and cwtfilterbank use this as the default value.

frequency is

Effect of Parameter Values on Morse Wavelet Shape

These plots show how different values of symmetry and time-bandwidth affect the shape of a Morse
wavelet. Longer time-bandwidths broaden the central portion of the wavelet and increase the rate of
the long time decay. Increasing the symmetry broadens the wavelet envelope, but does not affect the
long time decay. For symmetry values less than or equal to 3, the time decay increases as the time-
bandwidth increases. For symmetry greater than or equal to 3, reducing the time-bandwidth makes
the wavelet less symmetric. As both symmetry and time-bandwidth increase, the wavelet oscillates
more in time and narrows in frequency. Very small time-bandwidth and large symmetry values
produce undesired time-domain sidelobes and frequency-domain asymmetry.

In the time-domain plots in the left column, the red line is the real part and the blue line is the
imaginary part. The contour plots in the right column show how the parameters affect the spread in
time and frequency.

2-17

2 Continuous Wavelet Analysis

2-18

~+=3and P2=60

0.2

240 260 280
Time
~v=3and P2=93

240 260 280

~=3and P2 =60

Frequency

Frequency

Time

Time

Morse Wavelets

~v=15and P2=3 v=15and P2=3
0.5
&
=
g
0
g
\ w
u
0.5
240 260 280 Time
Time
o ~v=25and P2=3 v=25and P2=3
&
=
[5F]
=
8
L

240 260 280

Relationship Between Analytic Morse Wavelet and Analytic Signal

The coefficients from a wavelet transform using an analytic wavelet on a real signal are proportional
to the coefficients of the corresponding analytic signal. An analytic signal is defined as the inverse
Fourier transform of

X q(w) = X (W) + sgn(w)x (w)

The value of the analytic signal depends on w.

* For w > 0, the Fourier transform of an analytic signal is two times the Fourier transform of the
corresponding nonanalytic signal,X (w).

* For w = 0, the Fourier transform of an analytic signal is equal to the Fourier transform of the
corresponding nonanalytic signal.

* For w < 0, the Fourier transform of an analytic signal vanishes.

Let Wf(u, s) denote the wavelet transform of a signal, f(t), at translation u and scale s. If the
analyzing wavelet is analytic, you obtain Wf(u, s) = %Wfa(u, s), where f(t) is the analytic signal

corresponding to f{t). For all wavelets used in cwt, the amplitude of the wavelet bandpass filter at the
peak frequency for each scale is set to 2. Additionally, cwt uses L1 normalization. For a real-valued
sinusoidal input with radian frequency w, and amplitude A, the wavelet transform using an analytic
wavelet yields coefficients that oscillate at the same frequency, w,, with an amplitude equal to

2-19

2 Continuous Wavelet Analysis

2-20

—~ . . _ w .
%w(swo). By isolating the coefficients at the scale, w—‘(’)’, a peak magnitude of 2 assures that the

analyzed oscillatory component has the correct amplitude, A.

Comparison of Analytic Wavelet Transform and Analytic Signal
Coefficients

This example shows how the analytic wavelet transform of a real signal approximates the
corresponding analytic signal.

This is demonstrated using a sine wave. If you obtain the wavelet transform of a sine wave using an
analytic wavelet and extract the wavelet coefficients at a scale corresponding to the frequency of the
sine wave, the coefficients approximate the analytic signal. For a sine wave, the analytic signal is a
complex exponential of the same frequency.

Create a sinusoid with a frequency of 50 Hz.

t
X

0:.001:1;
COS(2*pi*50*t);

Obtain its continuous wavelet transform using an analytic Morse wavelet and the analytic signal. You
must have the Signal Processing Toolbox™ to use hilbert.

[wt,f] = cwt(x,1000, 'voices',32, 'ExtendSignal', false);
analytsig = hilbert(x);

Obtain the wavelet coefficients at the scale closest to the sine wave's frequency of 50 Hz.

[~,idx] = min(abs(f-50));
morsecoefx = wt(idx,:);

Compare the real and imaginary parts of the analytic signal with the wavelet coefficients at the signal
frequency.

figure;

plot(t,[real(morsecoefx)' real(analytsig)']);

title('Real Parts');

ylim([-2 2]); grid on;

legend('Wavelet Coefficients', 'Analytic Signal', 'Location', 'SouthEast');
xlabel('Time'); ylabel('Amplitude');

Morse Wavelets

) Real Parts

Amplitude
=

-1.ar Wavelet Coefficients
— Analytic Signal

_2 i i i i i i
1] 0.1 02 03 04 05 06 07 0B 09 1

Time

figure;

plot(t, [imag(morsecoefx)' imag(analytsig)']);

title('Imaginary Parts');

ylim([-2 2]); grid on;

legend('Wavelet Coefficients', 'Analytic Signal', 'Location', 'SouthEast');
xlabel('Time'); ylabel('Amplitude');

2-21

2 Continuous Wavelet Analysis

2-22

Amplitude
=

151 Wavelet Coefficients
Analytic Signal

1] 0.1 02 03 04 05 06 07 0B 09 1
Time

cwt uses L1 normalization and scales the wavelet bandpass filters to have a peak magnitude of 2. The
factor of 1/2 in the above equation is canceled by the peak magnitude value.

The wavelet transform represents a frequency-localized filtering of the signal. Accordingly, the CWT
coefficients are less sensitive to noise than are the Hilbert transform coefficients.

Add highpass noise to the signal and reexamine the wavelet coefficients and the analytic signal.

y = x + filter(1,[1 0.9],0.1*randn(size(x)));
analytsig = hilbert(y);

[wt,f] = cwt(y,1000, 'voices',b32, 'ExtendSignal',0);
morsecoefy = wt(idx,:);

figure;

plot(t,[real(analytsig)' x'1);
legend('Analytic Signal', 'Original Signal');
grid on;

xlabel('Time'); ylabel('Amplitude');
ylim([-2 2])

Morse Wavelets

2 T T T T T T T T T
— Analytic Signal
15+ — Criginal Signal |
1 -

Amplitude
=

v} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

figure;
plot(t,[real(morsecoefy)' x']);

legend('Wavelet Coefficients', 'Original Signal');
grid on;

xlabel('Time'); ylabel('Amplitude');

ylim([-2 2])

2-23

2 Continuous Wavelet Analysis

2 T T T T T T T T T

Wavelet Coefficients
Original Signal i

15T

o
n
T

Amplitude
=

i
=
£n

I
s
———

1] 0.1 0.2 03 D4 05 06 0.7 08 0.9 1
Time

Recommended Morse Wavelet Settings for the CWT

For the best results when using the CWT, use a symmetry, y, of 3, which is the default for cwt and

cwtfilterbank. With gamma fixed, increasing the time-bandwidth product P? narrows the wavelet
filter in frequency while increasing the width of the central portion of the filter in time. It also
increases the number of oscillations of the wavelet under the central portion of the filter.

References

[1] Olhede, S. C., and A. T. Walden. “Generalized morse wavelets.” IEEE Transactions on Signal
Processing, Vol. 50, No. 11, 2002, pp. 2661-2670.

[2] Lilly, J. M., and S. C. Olhede. “Higher-order properties of analytic wavelets.” IEEE Transactions on
Signal Processing, Vol. 57, No. 1, 2009, pp. 146-160.

[3] Lilly, J. M., and S. C. Olhede. “On the analytic wavelet transform.” IEEE Transactions on
Information Theory, Vol. 56, No. 8, 2010, pp. 4135-4156.

[4] Lilly, J. M., and S. C. Olhede. “Generalized Morse wavelets as a superfamily of analytic wavelets.”
IEEE Transactions on Signal Processing Vol. 60, No. 11, 2012, pp. 6036-6041.

[5] Lilly, J. M. jLab: A data analysis package for Matlab, version 1.6.2., 2016. http://www.jmlilly.net/
jmlsoft.html.

2-24

Morse Wavelets

[6] Lilly, J. M. “Element analysis: a wavelet-based method for analysing time-localized events in noisy
time series.” Proceedings of the Royal Society A. Volume 473: 20160776, 2017, pp. 1-28.
dx.doi.org/10.1098/rspa.2016.0776.

2-25

2 Continuous Wavelet Analysis

Boundary Effects and the Cone of Influence

2-26

This topic explains the cone of influence (COI) and the convention Wavelet Toolbox™ uses to compute
it. The topic also explains how to interpret the COI in the scalogram plot, and exactly how the COI is

computed in cwtfilterbank and cwt.

Load the Kobe earthquake seismograph signal. Plot the scalogram of the Kobe earthquake
seismograph signal. The data is sampled at 1 hertz.

load kobe
cwt (kobe, 1)
Magnitude Scalogram x10%
12.5
12

Frequency (mHz)
Magnitude

Time {mins)

In addition to the scalogram, the plot also features a dashed white line and shaded gray regions from
the edge of the white line to the time and frequency axes. Plot the same data using the sampling
interval instead of sampling rate. Now the scalogram is displayed in periods instead of frequency.

cwt (kobe, seconds (1))

Boundary Effects and the Cone of Influence

Magnitude Scalogram x10%

Magnitude

0.5

0 500 1000 1500 2000 2500 3000
Time (secs)

The orientation of the dashed white line has flipped upside down, but the line and the shaded regions
are still present.

The white line marks what is known as the cone of influence. The cone of influence includes the line
and the shaded region from the edge of the line to the frequency (or period) and time axes. The cone
of influence shows areas in the scalogram potentially affected by edge-effect artifacts. These are
effects in the scalogram that arise from areas where the stretched wavelets extend beyond the edges
of the observation interval. Within the unshaded region delineated by the white line, you are sure that
the information provided by the scalogram is an accurate time-frequency representation of the data.
Outside the white line in the shaded region, information in the scalogram should be treated as
suspect due to the potential for edge effects.

CWT of Centered Impulse

To begin to understand the cone of influence, create a centered impulse signal of length 1024
samples. Create a CWT filter bank using cwtfilterbank with default values. Use wt to return the
CWT coefficients and frequencies of the impulse. For better visualization, normalize the CWT
coefficients so that the maximum absolute value at each frequency (for each scale) is equal to 1.

X = zeros(1024,1);

x(512) = 1;

fb = cwtfilterbank;
[cfs,f] = wt(fb,x);

cfs = cfs./max(cfs,[]1,2);

Use the helper function helperPlotScalogram to the scalogram. The code for
helperPlotFunction is at the end of this example. Mark the location of the impulse with a line.

2-27

2 Continuous Wavelet Analysis

2-28

helperPlotScalogram(f,cfs);

line(ax, [512 5121, [min(f) max(f)]1,...
[max(abs(cfs(:))) max(abs(cfs(:)))]1);
title('Scalogram of Centered Impulse')

ax
htl

Scalogram of Centered Impulse

— 1

108

4 0.8

10" 107
1k}
=3
=
[
%]
7]
A
[&]
o
[

1072

100 200 300 400 500 600 700 BOO 900 1000
Time

The solid black line shows the location of the impulse in time. Note that as the frequency decreases,
the width of the CWT coefficients in time that are nonzero and centered on the impulse increases.
Conversely, as the frequency increases, the width of the CWT coefficients that are nonzero decreases
and becomes increasingly centered on the impulse. Low frequencies correspond to wavelets of longer
scale, while higher frequencies correspond to wavelets of shorter scale. The effect of the impulse
persists longer in time with longer wavelets. In other words, the longer the wavelet, the longer the
duration of influence of the signal. For a wavelet centered at a certain point in time, stretching or
shrinking the wavelet results in the wavelet "seeing" more or less of the signal. This is referred to as
the wavelet's cone of influence.

Boundary Effects

The previous section illustrates the cone of influence for an impulse in the center of the observation,
or data interval. But what happens when the wavelets are located near the beginning or end of the
data? In the wavelet transform, we not only dilate the wavelet, but also translate it in time. Wavelets
near the beginning or end of the data inevitably "see" data outside the observation interval. Various
techniques are used to compensate for the fact that the wavelet coefficients near the beginning and
end of the data are affected by the wavelets extending outside the boundary. The cwtfilterbank
and cwt functions offer the option to treat the boundaries by reflecting the signal symmetrically or
periodically extending it. However, regardless of which technique is used, you should exercise caution
when interpreting wavelet coefficients near the boundaries because the wavelet coefficients are

Boundary Effects and the Cone of Influence

affected by values outside the extent of the signal under consideration. Further, the extent of the
wavelet coefficients affected by data outside the observation interval depends on the scale
(frequency). The longer the scale, the larger the cone of influence.

Repeat the impulse example, but place two impulses, one at the beginning of the data and one at the
end. Also return the cone of influence. For better visualization, normalize the CWT coefficients so that
the maximum absolute value at each frequency (for each scale) is equal to 1.

dirac = zeros(1024,1);

dirac([1 1024]) = 1;

[cfs,f,coi] = wt(fb,dirac);

cfs = cfs./max(cfs,[]1,2);
helperPlotScalogram(f,cfs)
title('Scalogram of Two-Impulse Signal')

Scalogram of Two-Impulse Signal

{109
4 0.8
101 107
Lah]
o
=
]
%)
I
A
[
-
O
102

100 200 300 400 500 o600 VOO 800 900 1000
Time

Here it is clear that the cone of influence for the extreme boundaries of the observation interval
extends into the interval to a degree that depends on the scale of the wavelet. Therefore, wavelet
coefficients well inside the observation interval can be affected by what data the wavelet sees at the
boundaries of the signal, or even before the signal's actual boundaries if you extend the signal in
some way.

In the previous figure, you should already see a striking similarity between the cone of influence
returned by cwtfilterbank or plotted by the cwt function and areas where the scalogram
coefficients for the two-impulse signal are nonzero.

While it is important to understand these boundary effects on the interpretation of wavelet
coefficients, there is no mathematically precise rule to determine the extent of the cone of influence

2-29

2 Continuous Wavelet Analysis

2-30

at each scale. Nobach et al. [2] define the extent of the cone of influence at each scale as the point
where the wavelet transform magnitude decays to 2% of its peak value. Because many of the wavelets
used in continuous wavelet analysis decay exponentially in time, Torrence and Compo [3] use the time
constant 1/e to delineate the borders of the cone of influence at each scale. For Morse wavelets, Lilly
[1] uses the concept of the "wavelet footprint," which is the time interval that encompasses
approximately 95% of the wavelet's energy. Lilly delineates the COI by adding 1/2 the wavelet
footprint to the beginning of the observation interval and subtracting 1/2 the footprint from the end
of the interval at each scale.

The cwtfilterbank and cwt functions use an approximation to the 1/e rule to delineate the COI.
The approximation involves adding one time-domain standard deviation at each scale to the
beginning of the observation interval and subtracting one time-domain standard deviation at each
scale from the end of the interval. Before we demonstrate this correspondence, add the computed
COI to the previous plot.

helperPlotScalogram(f,cfs,coi)
title('Scalogram with Cone of Influence')

Scalogram with Cone of Influence

10.8
4 0.8
107 407
ik}
=3
=
[}
%]
I
o
[
2N
[
1072

100 200 300 400 500 600 70O @800 900 1000
Time

You see that the computed COI is a good approximation to boundaries of the significant effects of an
impulse at the beginning and end of the signal.

To show how cwtfilterbank and cwt compute this rule explicitly, consider two examples, one for
the analytic Morlet wavelet and one for the default Morse wavelet. Begin with the analytic Morlet
wavelet, where our one time-domain standard deviation rule agrees exactly with the expression of the
folding time used by Torrence and Compo [3].

Boundary Effects and the Cone of Influence

fb = cwtfilterbank('Wavelet', "amor');
[~,f,coi] = wt(fb,dirac);

The expression for the COI in Torrence and Compo is 1/2s where s is the scale. For the analytic Morlet
wavelet in cwtfilterbank and cwt, this is given by:

cf = 6/(2*%pi);
predtimes = sqrt(2)*cf./f;

Plot the COI returned by cwtfilterbank along with the expression used in Torrence and Compo.

plot(1:1024,coi, 'k--"', " 'linewidth',2)

hold on

grid on

plot(predtimes,f, 'r*")
plot(1024-predtimes,f, 'r*")

set(gca, 'yscale', '"log")

axis tight

legend('COI', 'Predicted COI', 'Location', 'best')
xlabel('Samples"')

ylabel('Hz")

title('Cone of Influence - Analytic Morlet Wavelet')

Cone of Influence - Analytic Morlet Wavelet

4 Predicted COI

107" §

H=z

102}
i ﬁ%

oy
o

*'*h*_ *‘*"*-]

* 4 o
i i i I%M**I i i i I-
100 200 300 400 500 600 700 BOO 900 1000
Samples

The last example shows the same correspondence for the default Morse wavelet in cwtfilterbank
and cwt. The time-domain standard deviation of the default Morse wavelet is 5.5008, and the peak
frequency is 0.2995 cycles/sample. Use the center frequencies of the wavelet bandpass filters as well
as the time-domain standard deviation rule to obtain the predicted COI and compare against the
values returned by cwtfilterbank.

2-31

2 Continuous Wavelet Analysis

2-32

cwtfilterbank;

,coi] = wt(fb,dirac);

5.5008;

cf 0.2995;

predtimes = cf./f*sd;

figure

plot(1:1024,coi, 'k--", " 'linewidth',2)

hold on

grid on

plot(predtimes,f, 'r*")
plot(1024-predtimes,f, 'r*")

set(gca, 'yscale', "log")

axis tight

legend('COI', 'Predicted COI', 'Location', 'best')
xLlabel('Samples"')

ylabel('Hz")

title('Cone of Influence - Default Morse Wavelet')

1
I =

Cone of Influence - Default Morse Wavelet

4 Predicted COI

107"
]
T
10721
4¥
*#
ey, *4-**
I 1 1 1 d M 1 I 1 1
100 200 300 400 500 600 F00 800 900 1000
Samples
Appendix

The following helper function is used in this example.

helperPlotScalogram

function varargout = helperPlotScalogram(f,cfs,coi)
nargoutchk(0,1);

ax = newplot;

surf(ax,1:1024,f,abs(cfs), 'EdgeColor', 'none')

Boundary Effects and the Cone of Influence

ax.YScale = 'log';
caxis([0.01 1])

colorbar

grid on

ax.YLim = [min(f) max(f)];
ax.XLim = [1 size(cfs,2)];
view(0,90)

xlabel('Time")
ylabel('Cycles/Sample')

if nargin == 3
hl = line(ax,1:1024,coi,ones(1024,1));
hl.Color = 'k';
hl.LineWidth = 2;

end

if nargout > 0
varargout{l} = ax;
end

end

References

[1] Lilly, J. M. “Element analysis: a wavelet-based method for analysing time-localized events in noisy
time series.” Proceedings of the Royal Society A. Volume 473: 20160776, 2017, pp. 1-28.
dx.doi.org/10.1098/rspa.2016.0776.

[2] Nobach, H., Tropea, C., Cordier, L., Bonnet, J. P, Delville,]., Lewalle, J., Farge, M., Schneider, K.,
and R. J. Adrian. "Review of Some Fundamentals of Data Processing." Springer Handbook of
Experimental Fluid Mechanics (C. Tropea, A. L. Yarin, and]. E. Foss, eds.). Berlin, Heidelberg:
Springer, 2007, pp. 1337-1398.

[3] Torrence, C., and G. Compo. "A Practical Guide to Wavelet Analysis." Bulletin of the American
Meteorological Society. Vol. 79, Number 1, 1998, pp. 61-78.

See Also

Apps
Signal Analyzer

Functions
cwt | cwtfilterbank | pspectrum

More About

. “Morse Wavelets” on page 2-16
. “Continuous and Discrete Wavelet Transforms”

2-33

2 Continuous Wavelet Analysis

Time-Frequency Analysis and Continuous Wavelet Transform

2-34

This example shows how the variable time-frequency resolution of the continuous wavelet transform
can help you obtain a sharp time-frequency representation.

The continuous wavelet transform (CWT) is a time-frequency transform, which is ideal for analyzing
nonstationary signals. A signal being nonstationary means that its frequency-domain representation
changes over time. Many signals are nonstationary, such as electrocardiograms, audio signals,
earthquake data, and climate data.

Load Hyperbolic Chirp

Load a signal that has two hyperbolic chirps. The data are sampled at 2048 Hz. The first chirp is
active between 0.1 and 0.68 seconds, and the second chirp is active between 0.1 and 0.75 seconds.

The instantaneous frequency (in hertz) of the first chirp at time t is %/ 2m . The instantaneous
.8—t

frequency of the second chirp at time ¢ is (();)—Ht)z/ 21m. Plot the signal.
load hychirp

plot(t,hychirp)

grid on

title('Signal')

axis tight

xlabel('Time (s)"')

ylabel('Amplitude")

Signal

Amplitude
=

—_lh“ |

01 02 03 04 05 06 07 08 09 1
Time (s)

Time-Frequency Analysis and Continuous Wavelet Transform

Time-Frequency Analysis: Fourier Transform

The Fourier transform (FT) is very good at identifying frequency components present in a signal.
However, the FT does not identify when the frequency components occur.

Plot the magnitude spectrum of the signal. Zoom in on the region between 0 and 200 Hz.

sigLen numel (hychirp);

fchirp fft(hychirp);

fr = Fs*(0:1/Fs:1-1/Fs);
plot(fr(l:sigLen/2),abs(fchirp(l:sigLen/2)), 'x-")
xlabel('Frequency (Hz)"')

ylabel('Amplitude')

axis tight

grid on

xlim([0 200])

180 = T T T T T T T T
160

b
|

—
I

120 1

S

gmu-i‘ ! |

IR

BO | %]
au-)ll ﬁr*ﬁﬁﬁ]
LT U

af A R A -
f U VA,

Frequency (Hz)

Time-Frequency Analysis: Short-Time Fourier Transform

The Fourier transform does not provide time information. To determine when the changes in
frequency occur, the short-time Fourier transform (STFT) approach segments the signal into different
chunks and performs the FT on each chunk. The STFT tiling in the time-frequency plane is shown
here.

2-35

2 Continuous Wavelet Analysis

Frequency

The STFT provides some information on both the timing and the frequencies at which a signal event
occurs. However, choosing a window (segment) size is key. For time-frequency analysis using the
STFT, choosing a shorter window size helps obtain good time resolution at the expense of frequency
resolution. Conversely, choosing a larger window helps obtain good frequency resolution at the
expense of time resolution.

Once you pick a window size, it remains fixed for the entire analysis. If you can estimate the
frequency components you are expecting in your signal, then you can use that information to pick a
window size for the analysis.

The instantaneous frequencies of the two chirps at their initial time points are approximately 5 Hz
and 15 Hz. Use the helper function helperPlotSpectrogram to plot the spectrogram of the signal
with a time window size of 200 milliseconds. The source code for helperPlotSpectrogram is listed
in the appendix. The helper function plots the instantaneous frequencies over the spectrogram as
black dashed-line segments. The instantaneous frequencies are resolved early in the signal, but not
as well later.

helperPlotSpectrogram(hychirp,t,Fs,200)

2-36

Time-Frequency Analysis and Continuous Wavelet Transform

Time Resolution: 200 ms

1000

900

800

700

600

Hz

500

Power (dB}

400

300

200

100

Now use helperPlotSpectrogram to plot the spectrogram with a time window size of 50
milliseconds. The higher frequencies, which occur later in the signal, are now resolved, but the lower
frequencies at the beginning of the signal are not.

helperPlotSpectrogram(hychirp,t,Fs,50)

2-37

2 Continuous Wavelet Analysis

2-38

Time Resolution: 50 ms

1000

800

800

700

600

Hz

500

Power (dB}

400

300

200

100

For nonstationary signals like the hyperbolic chirp, using the STFT is problematic. No single window
size can resolve the entire frequency content of such signals.

Time-Frequency Analysis: Continuous Wavelet Transform

The continuous wavelet transform (CWT) was created to overcome the resolution issues inherent in
the STFT. The CWT tiling on the time-frequency plane is shown here.

Time-Frequency Analysis and Continuous Wavelet Transform

Frequency

The CWT tiling of the plane is useful because many real-world signals have slowly oscillating content
that occurs on long scales, while high frequency events tend to be abrupt or transient. However, if it
were natural for high-frequency events to be long in duration, then using the CWT would not be
appropriate. You would have poorer frequency resolution without gaining any time resolution. But
that is quite often not the case. The human auditory system works this way; we have much better
frequency localization at lower frequencies, and better time localization at high frequencies.

Plot the scalogram of the CWT. The scalogram is the absolute value of the CWT plotted as a function
of time and frequency. The plot uses a logarithmic frequency axis because frequencies in the CWT are
logarithmic. The presence of the two hyperbolic chirps in the signal is clear from the scalogram. With
the CWT, you can accurately estimate the instantaneous frequencies throughout the duration of the
signal, without worrying about picking a segment length.

cwt (hychirp,Fs)

2-39

2 Continuous Wavelet Analysis

2-40

Magnitude Scalogram

1049

Frequency (Hz)
Magnitude

0 100 200 300 400 500 600 700 8OO 900
Time (ms)

The white dashed line marks what is known as the cone of influence. The cone of influence shows
areas in the scalogram potentially affected by boundary effects. For more information, see “Boundary

Effects and the Cone of Influence” on page 2-26.

To get a sense of how rapidly the magnitude of the wavelet coefficients grows, use the helper function
helperPlotScalogram3d to plot the scalogram as a 3-D surface. The source code for
helperPlotScalogram3d is listed in the appendix.

helperPlotScalogram3d(hychirp,Fs)

Time-Frequency Analysis and Continuous Wavelet Transform

Scalogram In 3-D

Magnitude

0.6
0.4

107

Frequency (Hz) 107 0 . Time (s)

Use the helper function helperPlotScalogram to plot the scalogram of the signal and the

instantaneous frequencies. The source code for helperPlotScalogram is listed in the appendix.

The instantaneous frequencies align well with the scalogram features.

helperPlotScalogram(hychirp,Fs)

2-41

2 Continuous Wavelet Analysis

2-42

Scalogram and Instantaneous Frequencies

1049
612

2566

128

Hz
magnitude

32

16

1] 01 02 03 04 05 06 07 08 09
Seconds

Appendix - Helper Functions

helperPlotSpectrogram

function helperPlotSpectrogram(sig,t,Fs,timeres)
% This function is only intended to support this wavelet example.
% It may change or be removed in a future release.

[px, fx,tx] = pspectrum(sig,Fs, 'spectrogram', 'TimeResolution',timeres/1000);
hp = pcolor(tx, fx,20*logl0(abs(px)));

hp.EdgeAlpha = 0;

ylims = hp.Parent.YLim;

yticks = hp.Parent.YTick;

cl = colorbar;

cl.Label.String = 'Power (dB)';

axis tight

hold on

title(['Time Resolution: ',num2str(timeres),' ms'])
xLlabel('Time (s)')

ylabel('Hz");

dt = 1/Fs;

idxbegin = round(0.1/dt);

idxendl = round(0.68/dt);

idxend2 = round(0.75/dt);

instfreql = abs((15*pi)./(0.8-t)."2)./(2*pi);

instfreg2 = abs((5*pi)./(0.8-t).”2)./(2*pi);
plot(t(idxbegin:idxendl), (instfreql(idxbegin:idxendl)), 'k--");
hold on;

Time-Frequency Analysis and Continuous Wavelet Transform

plot(t(idxbegin:idxend2), (instfreq2(idxbegin:idxend2)), 'k--");
ylim(ylims);

hp.Parent.YTick = yticks;

hp.Parent.YTickLabels = yticks;

hold off

end

helperPlotScalogram

function helperPlotScalogram(sig,Fs)

% This function is only intended to support this wavelet example.
% It may change or be removed in a future release.

[cfs,f] = cwt(sig,Fs);

sigLen = numel(sig);
t = (0:siglLen-1)/Fs;

hp = pcolor(t,log2(f),abs(cfs));

hp.EdgeAlpha = 0;

ylims = hp.Parent.YLim;

yticks = hp.Parent.YTick;

cl = colorbar;

cl.Label.String = 'magnitude’;

axis tight

hold on

title('Scalogram and Instantaneous Frequencies')
xlabel('Seconds');

ylabel('Hz");

dt = 1/2048;

idxbegin = round(0.1/dt);

idxendl = round(0.68/dt);

idxend2 = round(0.75/dt);

instfreql = abs((15*pi)./(0.8-t)."2)./(2*pi);
instfreq2 = abs((5*pi)./(0.8-t)."2)./(2*pi);
plot(t(idxbegin:idxendl),log2(instfreql(idxbegin:idxendl)), 'k--");
hold on;
plot(t(idxbegin:idxend2),log2(instfreq2(idxbegin:idxend2)), 'k--");
ylim(ylims);

hp.Parent.YTick = yticks;

hp.Parent.YTickLabels = 2.”yticks;

end

helperPlotScalogram3d

function helperPlotScalogram3d(sig,Fs)

% This function is only intended to support this wavelet example.
% It may change or be removed in a future release.

figure

[cfs,f] = cwt(sig,Fs);

sigLen = numel(sig);

t = (0:sigLen-1)/Fs;
surface(t,f,abs(cfs));
xlabel('Time (s)')
ylabel('Frequency (Hz)"')
zlabel('Magnitude')
title('Scalogram In 3-D")
set(gca, 'yscale', '"log")

2-43

2 Continuous Wavelet Analysis

shading interp
view([-40 30])
end

See Also
cwt | cwtfilterbank | waveletScattering | waveletScattering2

More About

. “Boundary Effects and the Cone of Influence” on page 2-26
. “Classify Time Series Using Wavelet Analysis and Deep Learning” on page 13-69
. “Wavelet Time Scattering Classification of Phonocardiogram Data” on page 13-35

2-44

Continuous Wavelet Analysis of Modulated Signals

Continuous Wavelet Analysis of Modulated Signals

This example shows how to use the continuous wavelet transform (CWT) to analyze modulated
signals.

Load a quadratic chirp signal. The signal's frequency begins at approximately 500 Hz at t = 0,
decreases to 100 Hz at t=2, and increases back to 500 Hz at t=4. The sampling frequency is 1 kHz.

load quadchirp;
fs = 1000;

Obtain a time-frequency plot of this signal using the CWT with a bump wavelet. The bump wavelet is
a good choice for the CWT when your signals are oscillatory and you are more interested in time-
frequency analysis than localization of transients.

[cfs,f] = cwt(quadchirp, 'bump',fs);
helperCWTTimeFregPlot(cfs, tquad, f, 'surf','CWT of Quadratic Chirp', 'Seconds', 'Hz")

CWT of Quadratic Chirp

450

400

350

300

250

Hz
Fower

200

150

100

50

1] 0.5 1 1.5 2 25 3 3.5 4
Seconds

The CWT clearly shows the time evolution of the quadratic chirp's frequency. The quadratic chirp is a
frequency-modulated signal. While that signal is synthetic, frequency and amplitude modulation
occur frequently in natural signals as well. Use the CWT to obtain a time-frequency analysis of an
echolocation pulse emitted by a big brown bat (Eptesicus Fuscus). The sampling interval is 7
microseconds. Use the bump wavelet with 32 voices per octave. Thanks to Curtis Condon, Ken White,
and Al Feng of the Beckman Center at the University of Illinois for the bat data and permission to use
it in this example.

2-45

2 Continuous Wavelet Analysis

load batsignal

t = 0:DT:(numel(batsignal)*DT)-DT;

[cfs,f] = cwt(batsignal, 'bump',1/DT, 'VoicesPerOctave',b32);

helperCWTTimeFreqPlot(cfs,t.*1le6,f./1le3, 'surf', 'Bat Echolocation (CWT)',...
'Microseconds', 'kHz")

Bat Echolocation (CWT) <107

kHz

0 500 1000 1500 2000 2500
Microseconds

For the final example, obtain a time-frequency analysis of some seismograph data recorded during
the 1995 Kobe earthquake. The data are seismograph (vertical acceleration, nm/sq.sec)
measurements recorded at Tasmania University, Hobart, Australia on 16 January 1995 beginning at
20:56:51 (GMT) and continuing for 51 minutes at 1 second intervals. Use the default analytic Morse
wavelet.

load kobe;

dt = 1;

cwt(kobe,1);

title('CWT of 1995 Kobe Earthquake Seismograph Data');

2-46

Continuous Wavelet Analysis of Modulated Signals

Frequency (mHz)

CWT of 1995 Kobe Earthquake Seismograph Data x10%

Magnitude

0.5

Time (mins)

2-47

2 Continuous Wavelet Analysis

Remove Time-Localized Frequency Components

Create a signal consisting of exponentially weighted sine waves. The signal has two 25-Hz
components -- one centered at 0.2 seconds and one centered at 0.5 seconds. It also has two 70-Hz
components -- one centered at 0.2 and one centered at 0.8 seconds. The first 25-Hz and 70-Hz

components co-occur in time.

= 0:1/2000:1-1/2000;

dt = 1/2000;

x1 = sin(50*pi*t).*exp(-50*pi*(t-0.2).72);

X2 = sin(50*pi*t).*exp(-100*pi*(t-0.5).72);
x3 = 2*cos(140*pi*t).*exp(-50*pi*(t-0.2).72);
x4 = 2*sin(140*pi*t).*exp(-80*pi*(t-0.8).72);
X = X1+x2+x3+x4;

plot(t,x)

grid on;

title('Superimposed Signal')

Superimposed Signal

3 T T T T T T T

. .~

|' \
”m ,ulL“u“‘"‘“/\J” |.'\,r—umj| M

il

0 w@““” |
“wl

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Obtain and display the CWT.

cwt(x,2000);
title('Analytic CWT using Default Morse Wavelet');

2-48

0.8

0.9 1

Remove Time-Localized Frequency Components

Analytic CWT using Default Morse Wavelet

118
116
114
— 12
2 100
S 1]
T &
g =
g 0.8
LL
0.6
10 04
0.2

-
-
-

0O 100 200 300 400 500 600 700 8OO 900
Time (ms)

Remove the 25 Hz component which occurs from approximately 0.07 to 0.3 seconds by zeroing out
the CWT coefficients. Use the inverse CWT (icwt) to reconstruct an approximation to the signal.

[cfs,f] = cwt(x,2000);

Tl = .07; T2 .33;

F1 = 19; F2 34;

cfs(f > F1 & f<F2, t>Tl & t < T2) = 0;
xrec = icwt(cfs);

Display the CWT of the reconstructed signal. The initial 25-Hz component is removed.

cwt(xrec,2000)

2-49

2 Continuous Wavelet Analysis

2-50

Magnitude Scalogram

Frequency (Hz)

10

-

-
-
-

0 100 200 300 400 500 600 YOO 800

Time (ms)

Plot the original signal and the reconstruction.

subplot(2,1,1);

plot(t,x);

grid on;

title('Original Signal');
subplot(2,1,2);

plot(t,xrec)

grid on;

title('Signal with first 25-Hz component

removed');

800

1.8

1.6

14

Magnitude

Remove Time-Localized Frequency Components

Original Signal

AR |
‘ ‘ M, A Tl ” ly
. —M.n_-"l.lrlhl ||.|1|i|ni| m ﬂl Wuu |J|II.|'|UH..‘\.«-—~'*_{\J|I \Il|r\/\~—‘*ﬂ“un|ll| |l| |I| mv ‘I‘ ‘I| |l|r||l|n||||1|.|"l.ﬂ"“—_

-2

_‘4 i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 o7 0.8 0.9 1

5 Signal with first 25-Hz component removed

‘I -

- “Ww"* i “'1'””' Mv"“p"w

l I| \

W

Compare the reconstructed signal with the original signal without the 25-Hz component centered at
0.2 seconds.

y = X2+x3+x4;

figure;

plot(t,xrec)

hold on

plOt(t:y,'r'-')

grid on;

legend('Inverse CWT approximation','Original Signal Without 25-Hz');
hold off

2-51

2 Continuous Wavelet Analysis

2.5 T T T T T T T T T

Inverse CWT approximation
2r — — —Original Signal Without 25-Hz

05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2-52

Time-Varying Coherence

Time-Varying Coherence

Fourier-domain coherence is a well-established technique for measuring the linear correlation
between two stationary processes as a function of frequency on a scale from 0 to 1. Because wavelets
provide local information about data in time and scale (frequency), wavelet-based coherence allows
you to measure time-varying correlation as a function of frequency. In other words, a coherence
measure suitable for nonstationary processes.

To illustrate this, examine near-infrared spectroscopy (NIRS) data obtained in two human subjects.
NIRS measures brain activity by exploiting the different absorption characteristics of oxygenated and
deoxygenated hemoglobin. The recording site was the superior frontal cortex for both subjects and
the data was sampled at 10 Hz. The data is taken from Cui, Bryant, & Reiss (2012) and was kindly
provided by the authors for this example.

In the experiment, the subjects alternatively cooperated and competed on a task. The period of the
task was approximately 7.5 seconds.

load NIRSData;

figure

plot(tm,NIRSData(:,1))

hold on

plot(tm,NIRSData(:,2),'r")

legend('Subject 1','Subject 2','Location', 'NorthWest')
xlabel('Seconds')

title('NIRS Data')

grid on;

hold off;

2-53

2 Continuous Wavelet Analysis

2-54

NIRS Data

0.6 T T T

1] 50 100 150 200 250 300 350 400
Seconds

Examining the time-domain data, it is not clear what oscillations are present in the individual time
series, or what oscillations are common to both data sets. Use wavelet analysis to answer both
questions.

Obtain the wavelet coherence as a function of time and frequency. You can use wcoherence to output
the wavelet coherence, cross-spectrum, scale-to- frequency, or scale-to-period conversions, as well as
the cone of influence. In this example, the helper function helperPlotCoherence packages some
useful commands for plotting the outputs of wcoherence.

[wcoh,~,f,coi] = wcoherence(NIRSData(:,1),NIRSData(:,2),10, 'numscales',16);
helperPlotCoherence(wcoh, tm,f,coi, 'Seconds', 'Hz"');

Time-Varying Coherence

Wavalat Cnheranne

I|I || |I ||I
09
2_00 '
0.8
wu
0.7 &
0.50 o
2
06 3
0.25 =
N . * ®
N 05 g
0.12 @
- 04 3
2
0.06 T
03
=
0.03
0.2
0.02 01
0.01 -
0 50 100 150 200 250 300 350
Seconds

In the plot, you see a region of strong coherence throughout the data collection period around 1 Hz.
This results from the cardiac rhythms of the two subjects. Additionally, you see regions of strong
coherence around 0.13 Hz. This represents coherent oscillations in the subjects' brains induced by
the task. If it is more natural to view the wavelet coherence in terms of periods rather than
frequencies, you can input the sampling interval. With the sampling interval, wcoherence provides
scale-to-period conversions.

[wcoh,~,P,coi] = wcoherence(NIRSData(:,1),NIRSData(:,2),seconds(1/10),...
'numscales',16);
helperPlotCoherence(wcoh, tm,seconds(P),seconds(coi), 'Time (secs)', 'Periods (Seconds)');

2-55

2 Continuous Wavelet Analysis

Wavelet Coherence

Periods (Seconds)
Magnitude-Squared Coherence

Again, note the coherent oscillations corresponding to the subjects' cardiac activity occurring
throughout the recordings with a period of approximately one second. The task-related activity is also
apparent with a period of approximately 8 seconds. Consult Cui, Bryant, & Reiss (2012) for a more
detailed wavelet analysis of this data.

In summary, this example showed how to use wavelet coherence to look for time-localized coherent
oscillatory behavior in two time series. For nonstationary signals, a measure of coherence that
provides simultaneous time and frequency (period) information is often more useful.

Reference: Cui, X., D. M. Bryant, and A. L. Reiss. "NIRS-Based hyperscanning reveals increased
interpersonal coherence in superior frontal cortex during cooperation." Neuroimage. Vol. 59, Number
3, 2012, pp. 2430-2437.

2-56

Continuous Wavelet Analysis of Cusp Signal

Continuous Wavelet Analysis of Cusp Signal

This example shows how to perform continuous wavelet analysis of a cusp signal. You can use cwt for
analysis using an analytic wavelet and wtmm to isolate and characterized singularities.

Load and plot a cusp signal. Display its definition at the command line.

load cuspamax;
plot(cuspamax); grid on;

2.5

0.5 :
.I'-Il..ll
80O 1000 1200

disp(caption)
= exp(-128*((x-0.3).72))-3*(abs(x-0.7).70.4);
Obtain and view the CWT of the cusp signal. The CWT uses an analytic Morse wavelet with gamma

x = linspace(0,1,1024); vy
equal to 2 and a time-bandwidth parameter of 2.5. Notice the narrow region in the scalogram
converging to the finest scale (highest frequency). This indicates a discontinuity in the signal.

cwt(cuspamax, 'WaveletParameters',[2 2.5]);

2-57

2 Continuous Wavelet Analysis

Magnitude Scalogram

1048

Mormalized Frequency (cycles/sample)
Magnitude

0 200 400 600 800 1000
Time (Samples)

Obtain a plot of the wavelet maxima lines using wavelet transform modulus maxima. wtmm returns
estimates of the Holder exponents, which characterize isolated singularities in a signal. Notice that
the cusp is shown very clearly using wtmm.

wtmm(cuspamax, 'ScalingExponent', 'local');

2-58

Continuous Wavelet Analysis of Cusp Signal

\ \ Sample |Holder Exponent

Wavelet Transform Maxima Lines 1 197 1 7353
2 305 1.85870

3 4149 1.7930

4 B33 0.3551

5 7 0.3579

B 20 0.3929

200 400 600 800 1000
Sample

2-59

2 Continuous Wavelet Analysis

Complex Continuous Analysis Using the Wavelet Analyzer App

This example shows how to use the Complex Continuous Wavelet 1-D tool in the Wavelet Analyzer
app to analyze a cusp signal.

1 Start the Complex Continuous Wavelet 1-D Tool.

From the MATLAB prompt, type waveletAnalyzer. The Wavelet Analyzer appears.

4 Wavelet Analyzer

File Window Help

o

X

One-Dimensional

pecialized Tools 1D

Wavelet 1-D

SWT Denaising 1-D

Wavelet Packet 1D

Density Estimation 1-D

Continuous Wavelet 1-D

Regression Estimation 1-D

‘Complex Continuous Wavelet 1-D

Wavelet Coefficients Seleclion 1D

Matching Pursuit 1-D

Wavelet 2D

Wavelet Packet 2D

Specialized Tools 2.

Continuous Wavelet Transform 2-D.

True Compression 2-D.

SWT Denoising 2D

Three Dimensional

Wavelet Coefficients Selection 2-D

| Wavelet 3D

Image Fusion

Multiple 1-D

Wultisignal Analysis 1-D

Hultivariate Denaising

Wuttiscale Princ. Comp. Analysis

Click the Complex Continuous Wavelet 1-D menu item.

The continuous wavelet analysis tool for 1-D signal data appears.

Acs e e 1% I
Hi (o e L m

ZHHcs fem
“ Haduki P Ak Caall £
= Halamnn
L P P

7 ¥ iorc L
M F Fispnuns
anrbmdak
rd b gk =l |

P |

Hh Fan- | w [=1
I

Unat ez

L LN Edi Frera~ Ix ki L —
- 1

x| - | e-

2 Load a signal.

At the MATLAB command prompt, type

2-60

Complex Continuous Analysis Using the Wavelet Analyzer App

load cuspamax;

In the Complex Continuous Wavelet 1-D tool, select File > Import from Workspace. When
the Import from Workspace dialog box appears, select the cuspamax variable. Click OK to
import the cusp signal data.

The default value for the sampling period is equal to 1 (second).
3 Perform a Complex Continuous Wavelet Transform
To start our analysis, let's perform an analysis using the cgau4 wavelet at scales 1 through 64 in

steps of 2, just as we did using command-line functions in “Continuous Wavelet Analysis of Cusp
Signal” on page 2-57.

In the upper-right portion of the Complex Continuous Wavelet 1-D tool, select the cgau4d
wavelet and scales 1-64 in steps of 2.

Data (Size) cusparmax (1024)

Wavelet coau - 1 -

Sampling Period 1

Scale Settings
Step by Step Mode -
Min. (=07 1
Step (=01 1

Max. [==5121 B4

Analyze

Click the Analyze button.

After a pause for computation, the tool displays the usual plots associated to the modulus of the
coefficients on the left side, and the angle of the coefficients on the right side.

2-61

2 Continuous Wavelet Analysis

Analyzed Sional (lenoth = 1024) Anatyzed Signal (encth = 1024)
2 2
1 1
o o
200 400 B00 800 1000 200 400 600 800 1000
Moduluzs of Ca b Coetficients Angle of Ca b Coetficients

[S — |
Scale af colars from M to MAX

Moduluzs (Ca k) for a =32 (frg= 0.009) Angle (Cab) for a=32 (frg= 0.009)
2 5
1M ° W
a -5
200 400 B0O &00 1000 200 400 60O 800 1000
Lacsl Maxima Lines Local Maxima Lines

200 400 BO0 o0 1000 200 400 BOO 800 1000

Each side has exactly the same representation that we found in “Continuous Wavelet Analysis of
Noisy Sinusoid Using the Wavelet Analyzer App” on page 2-6.

Select the plots related to the modulus of the coefficients using the Modulus option button in the
Selected Axes frame.

Anelyzed Signal (length = 1024)
2 T T T T T T T T

! I I ! I I I
100 200 300 400 500 60O 700 &00 |00 1000
Moduluz of Ca b Coefficients - Coloration mode: int + by scale

[|
Seale of calors from MM to MAK
Coefficierts Line Modulus - Cs 6 for seale @ = 32 (frequency = 0.003)

2 T T T T T T T T T T

o | I | 1 I |
100 200 300 400 500 BO0 Jo0 o0 00 1000

Lacal Maxima Lines
T T T T T T T T

Lot T
T et e =
TTTTT I T TTITTTITT

| | I | | I | | | I
100 200 300 400 500 600 700 G600 S00 1000

The figure now looks like the one in the real Continuous Wavelet 1-D tool.

To import and export information from the Complex Continuous Wavelet tool, see “Importing and
Exporting Information from the Wavelet Analyzer App” on page 2-14. The only difference is that the
variable coefs is a complex matrix (see “Saving Wavelet Coefficients” on page 2-14).

2-62

DFT-Based Continuous Wavelet Analysis Using the Graphical User Interface

DFT-Based Continuous Wavelet Analysis Using the Graphical
User Interface

You can use the Continuous Wavelet 1-D (Using FFT) tool to perform continuous wavelet analysis.

1 At the MATLAB command prompt, enter

cwtfttool
Continuous YWavelet 1-0 {Using FFT) =1 =
File View Insert Tools ‘Window Help k]
Signal
Sampling 1
Wavelet | morl
Parameter(5
Scale |Dyadic defautt
Analyze
Syrthesize
Dvyadic
Secales Selection
Manual Selection of Co
Initial scales
List of scales ssle
Manual selection
Colormagp Jet -
b Colors _lll:‘_ — 128
Brightress e is]
K |y | [ve i £ W= = [=
= 7= (Y- Ve) View fxes @ Dyn v [Close |

2 At the MATLAB command prompt, type
load noisdopp;

In the Continuous Wavelet 1-D (Using FFT) tool, select File > Import from Workspace.
When the Import from Workspace dialog box appears, select the noisdopp variable. Click OK
to import the data.

2-63

2 Continuous Wavelet Analysis

u Continuous YWavelet 1-0 (Using FFT)

File \iew Insert Tools ‘Window Help

Analyzed Signal

200 400 GO0 300 1000

Signal noizdopp (1024)

Sampling 10
Wavelet | morl

Parameter(g

Soale |Dyacic defautt +

Syrthesize

Dvyadic
Scales Selection

Manual Selection of Co..

Initial scales
List of zcales zele...

Manual selection

Colormiap
Mh. Colors
Brightress

Jet =

1 =1 128

e+
[

W
-

'+
-

=< |=

Viesn Axes| (@) Dyn V.
<2 .

Cloze

(@]=]

£

3

Using the menu default parameters, click Analyze.

n Continuous Wavelet 1-D (Using FFT)

File Wiew Insert Tools Window Help

Anzlyzed Signal

Anzlyzed Signal

200 400 OO 800 1000

200 400 GOO

GO0

‘1000

Continuous Wavelet Transform

410?22 b R e R PP PR R P PR PRI PR P 40
42293 20

4pB761 0
10524 gt -20
itré 2 i

0 500 1000 500 1000
Modulus Real part

17122 21?22 2 a0
12283 1220.3(. . S 20

876.1 U 761 i
6249 5249 20
74 -24§5¢ b

1000

Imaginary part

Info X=

pstory <7“ & L

[===]

Signal noisdopp (1024)
Sampling 10
Wavelet morl -

Parameter(g v.

Scale | Dyacic defadtt

Syrthesize

Synthesis v.

Dwyadic

Scales Selection
tanual Selection of Co..

Show syrthesized
D Initial scales
List of scales ssle

Manual selection

ColormmEg jet -
Mo Colors | 128
Brightress :]

Close

£

4

2-64

Reconstruct the signal based on all the default dyadic scales. Click Scales Selection.

DFT-Based Continuous Wavelet Analysis Using the Graphical User Interface

Selection of Scales

| W

alue

[L R

10
11
12
13
14

z
Z
3
5

-ooao
- 8040
.3313
_E117

T.7ETE

|

|

|

|

|

| 10.
| 1E.
| Zl.
| zZ9.
| 41.
| La.
| BE.
| 11&.
| 1sl.
|

ZZ6

8340
1835
2358
8571
g&00
6383
2817
3601
7363
TEEE

m

15

Eymhesize Close

Select all scales by clicking All. Click Synthesize.

u Continuous YWavelet 1-0 {Using FFT) EI@
File View Insert Tools ‘Window Help &
Analyzed and Syrthesized Signals Analyzed Signal Signal noisdopp (1024)
5 5 o
0 0 mor|
[E}
-5 -5
Cryadic default
o 200 400 600 800 1000 o 200 400 600 &00 1000
FRelative errors from List of Scales: MAK = 4.52 %% - L2 =3.03

Selection of Scales

Continuous Wavelet Transform N Value
40
20
0
-20
:| |40
0 500 1000 i 500 1000
Real part
21?22.2 i i
1228.3 N 20
0 g76.1 i
6249 -20
E 5??6 : ? -40 Colormap et -]
i Wb Colors [[-1| 128
i 500 1000
Imaginary part Brightness :]

In the top left, the synthesized signal plot is superimposed on the original signal. The relative
maximum and L2 errors are displayed under the plot.

The single integral CWT inversion does not produce perfect reconstruction, but the relative
errors using the default logarithmically-spaced scales are small.

Obtain a signal approximation from selected scales.

Click None in the Selection of Scales panel to undo the scale selection. Then, select only scale
indices greater than 10 and reconstruct an approximation to the original signal. Hold the Ctrl
key while selecting scale indices 11-21. The scale indices correspond to the following physical
scales.

dt = 1;
sO = 2*dt;
ds = 0.4875;

2 Continuous Wavelet Analysis

nb = 21;
physical scales = sO*pow.”((0:nb-1)*ds);

6 Click Synthesize.

The reconstructed signal from scale indices 11-21 is a lowpass approximation to the noisy

Doppler signal.
B Continuous Wavelet 1-D (Using FFT) ===
File \iew Insert Tools ‘Window Help v
Analyzed and Synthesized Signals Analyzed Signal Signal noisdopp (1024)
a a e
0 o mor|

B
-5 -5

Dryaclic default
1] 200 400 600 800 1000 1] 200 400 600 &00 1000
Relative errors from List of Scales: MAX = 7358 %% - L2 = 3540

g Selection of Scales i

Continuous Wavelet Transform N Value
71 15.1895 -
an 3 z1.2958
20 3 29,8571
1| 41.8600
0 1 55.6383
20 1z | 322817
13 | 115.3801
-40 14 | 161.7363
— 15 | 226.7555
] 500 1000] 500 1000 16 | 317.9156 E
Mlodulus 17 | 445. 7213
18 | &z4.9080
.......... 19 | 876.1293
40 20 | 12Z8.3449 | 4
an 21 | 172z.1559 -
0 Eymhes\ze Close
-20
- -40 Colormap jet -
= s b, Colors g 2| 128
1} 500 1000
Angle Imaginary part Brightness [-]

Gty Infa x= History == 2 e axes | @) Dyn Vi
n V= == v

7 Analyze using linear scales. In the Scales drop-down menu in the upper right, select Linear
default and click Analyze.

2-66

DFT-Based Continuous Wavelet Analysis Using the Graphical User Interface

u Continuous YWavelet 1-0 (Using FFT)

File \iew Insert Tools

‘Window Help

Analyzed Signal

Analyzed Signal

0 200 400

B00 800 1000

200 400 E00 800 1000

Continuous Wavelet Transform

2000.0
1778.9
505578

I
104522 ’
2311 e~ -50

50

-
-

'

200 400 60O g0o
Real part

=)
=}

0

Angle

_—
oy D el B

200 400 600 BOO 1000
Imaginaty part

Infa

— () By i
e =

[==]E=]
£
Signal noisdopp (1024)
Sampling period 1.00
Wiavelet marl -

Parameter(s) g -]

Scales|Linear default 7

Synthesize

Syrthesis Methoc | inegr -

Scales Selection
hfanual Selection of Coeffi...

Showe syrthesized signals
[it scales
List of scales selection

Manual selection

Colormap jet -
Mo.Colors M| 128

Brightness [:]

Note The other options under Scales include Dyadic default and Manual.

If you select Manual, a Define Scales button appears. Click Define Scales to set the

parameters for your scale vector.

Manual Selection of CWT Coefficients

Select coefficients manually by graphically selecting the CWT coefficients. Reconstruct the signal
from the selected coefficients. Click Manual Selection of Coefficients. The Select the

Coefficients Manually panel appears with a single box containing all the CWT coefficient moduli.

2-67

2 Continuous Wavelet Analysis

B Continuous Wavelet 1-D (Using FFT) = |EeR==)
File ‘iew Insert Tools Window Help a
Select the Cosfiicients Manually I
Siona

Analyzed Signal
T

T T T T T Sampling period
vt

Bl
Parameter(s)
o
Scales|Linear detautt -
5] B
| 1 1 1 1 1 1 1 1 1 ‘ Analyze ‘
0 100 2nn ann ann ann RN nn Ann a0 1000
Syrthesize

Synthesis Metho

| Scales Selection ‘
|Manual Selection of Coeffi.. ‘

Show synthesized signals
Initial scales

800 [List of scales selection

800 [Marwial selection

400

200

Colormag Jet -
o 100 200 300 400 500 GO0 oo 800 00 1000

Hlb. Colors -
(bEe) [vosuus = [Detete cnsaec | Brciness [= [+]

O 10 100+]| corter [1[0v] w= | =1 (=]
e T = Infa Histar: =l @) i
OG- on] [_v= | Voo | View Axes | (D) Dyn Wisu __C\nsa

You can change the CWT coefficient view to Angle, Real, or Imaginary.

To select a subset of coefficients, draw a box by left-clicking and dragging the mouse. When you
release the mouse button, a semi-transparent box with a green border is superimposed on the plot.

100 200 300 400 500 600 00 00 a0 1000

You can place multiple boxes on the same plot. To synthesize a signal based on the selected
coefficients, click Synthesize.

2-68

DFT-Based Continuous Wavelet Analysis Using the Graphical User Interface

u Continuous Wavelet 1-0 (Using FFT) EI@
File ‘iew Insert Tools Window Help a
Select the Cosfiicients Manually
Signal noiscopy (1024)
Analyzed and Synthesized Signals
T T T T T T T T T T 1.00
mor|
B
Linear detautt
I L L L L L I I L L Aralyze
o 100 2nn ann ann &nn RON nn ann a00 1000
Relative errors from Manual Selection: MAX =90 46 %% - L2 =
Synthesize
2000 Linear
1800
Scales Selection
1600
1400 hanual Selection of Coetfi..
1200 Showy synthesized signals
1000 [T Initisl scales
g00 List of scales selection
600 Marual selection
400
200
Colormag Jet -
o 100 200 300 400 500 GO0 oo 800 00 1000 hb. Colors: . = 128
HELP | Moculus « | | Detete Al Boxes Syrthesize Brightness E
o e | Gore ralE: W= = [= .

To select, unselect, or delete a box, right-click in the box. A context menu appears that allows you to
select, unselect, or delete the box. After you select the coefficients within the box, the border of the
box displays in green. When the coefficients within the box are not selected, the border of the box
displays in red.

You can move a box by clicking the left mouse button inside the box while simultaneously pressing
the Shift key. The border of the box changes to yellow, and you can drag the box to the desired
location. You must keep the Shift key pressed while you are moving the box.

Quit the manual selection mode by clicking the Close button.

In the Show synthesized signals from panel on the right, you can turn the plot of your synthesized
signal on and off by checking and unchecking Manual selection.

2-69

2 Continuous Wavelet Analysis

u Continuous Wavelet 1-0 (Using FFT) \ = || = || 22 \
File ‘iew Insert Tools Window Help a
Analyzed and Syrthesized Signals Analyzed Signal Signal noistopn (10241
5 5 4 Sampling period 1.00
o i} Wavelet marl v:
Parameter(s) g =
5 5 i)
Scales Linear detautt -
200 400 600 200 400 B00 800 1000)
Relahva errors from Manual Sslecllon MA)(90 A8 %% - L2=
Continuous Wavelet Transform
20000 Syrthesize
177849 a0
505578 -
4 336.7 Synthesis Method | jinear -
S —
206733
104223 r %’ o Manusl Selection of Costti.
100 >
200 400 600 800 1000 200 400 60O BOO 1000 Showy syrthesized signals
Modulus Real part [inttial sesles
50 List of scales selection
Manual selection
]
__“ ‘, .50 Colormap jet - —
T -
300 1000 Nt!. Colors
Imagmary pan Brightness

Using the File > Save > Synthesized signal menu, you can save the available synthesized signals.

Using the File > Save > Decomposition m

2-70

enu, you can save the wavelet analysis as a MAT file.

Two-Dimensional CWT of Noisy Pattern

Two-Dimensional CWT of Noisy Pattern

This example shows how to detect a pattern in a noisy image using the 2-D continuous wavelet
transform (CWT). The example uses both isotropic (non-directional) and anisotropic (directional)
wavelets. The isotropic wavelet is not sensitive to the orientation of the feature, while the directional
wavelet is.

Use the isotropic (non-directional) Mexican hat wavelet, also known as the Ricker wavelet, and the
anisotropic (directional) Morlet wavelet. Demonstrate that the real-valued Mexican hat wavelet does
not depend on the angle.

Y = zeros(32,32);

Y(16,16) = 1;

cwtmexh = cwtft2(Y, 'wavelet', 'mexh', 'scales',1, ...
'angles', [0 pi/2]);

surf(real(cwtmexh.cfs(:,:,1,1,1)));

shading interp; title('Angle = 0 Radians');

Angle = 0 Radians

Extract the wavelet corresponding to an angle of 117/2 radians. The wavelet is isotropic and therefore
does not differentiate oriented features in data.

surf(real(cwtmexh.cfs(:,:,1,1,2)));
shading interp; title('Angle = pi/2 Radians');

2-71

2 Continuous Wavelet Analysis

Angle = pi/2 Radians

-1.5 4

-2
30

20
20

Repeat the preceding steps for the complex-valued Morlet wavelet. The Morlet wavelet has a larger
spatial support than the Mexican hat wavelet, therefore this example uses a larger matrix. The
wavelet is complex-valued, so the modulus is plotted.

Y = zeros(64,64);

Y(32,32) = 1;

cwtmorl = cwtft2(Y, 'wavelet', 'morl', 'scales',1,...
'angles', [0 pi/2]);

surf(abs(cwtmorl.cfs(:,:,1,1,1)));

shading interp; title('Angle = 0 Radians');

2-72

Two-Dimensional CWT of Noisy Pattern

Angle = 0 Radians

x 1074
3 -

2.5

Extract the wavelet corresponding to an angle of 17/2 radians. Unlike the Mexican hat wavelet, the
Morlet wavelet is not isotropic and therefore is sensitive to the direction of features in the data.

surf(abs(cwtmorl.cfs(:,:,1,1,2)));
shading interp; title('Angle = pi/2 Radians');

2-73

2 Continuous Wavelet Analysis

Angle = pi/2 Radians

%1074
4 -

Apply the Mexican hat and Morlet wavelets to the detection of a pattern in noise. Create a pattern
consisting of line segments joined at a 90-degree angle. The amplitude of the pattern is 3 and it
occurs in additive N(0,1) white Gaussian noise.

X = zeros(256,256);

X(100:200,100:102) =
X(200:202,100:125) =
X = X+randn(size(X));
imagesc(X); axis xy;

3;
3;

2-74

Two-Dimensional CWT of Noisy Pattern

250

200

150

100

50 100 150 200 250

Obtain the 2-D CWT at scales 3 to 8 in 0.5 increments with the Mexican hat wavelet. Visualize the
magnitude-squared 2-D wavelet coefficients at scale 3.

cwtmexh = cwtft2(X, 'wavelet', 'mexh','scales',3:0.5:8);

surf(abs(cwtmexh.cfs(:,:,1,3,1)).72);
view(0,90); shading interp; axis tight;

2-75

2 Continuous Wavelet Analysis

2-76

250

200

150

100

50

50 100 150 200 250

Use a directional Morlet wavelet to extract the vertical and horizontal line segments separately. The
vertical line segment is extracted by one angle. The horizontal line segment is extracted by another
angle.

cwtmorl = cwtft2(X, 'wavelet', 'morl', 'scales',3:0.5:8,...
'angles', [0 pi/2]);

surf(abs(cwtmorl.cfs(:,:,1,4,1)).72);

view(0,90); shading interp; axis tight;

Two-Dimensional CWT of Noisy Pattern

250

200

150

100

50

50 100 150 200 250

figure;
surf(abs(cwtmorl.cfs(:,:,1,4,2)).72);
view(0,90); shading interp; axis tight;

2-77

2 Continuous Wavelet Analysis

250

200

150

100

50

50 100 150 200 250

2-78

2-D Continuous Wavelet Transform App

2-D Continuous Wavelet Transform App

In this section...

“2-D Continuous Wavelet Transform” on page 2-79
“2-D CWT App Example” on page 2-79

The 2-D continuous wavelet transform (CWT) app enables you to analyze your image data and export
the results of that analysis to the MATLAB workspace. The app provides all the functionality of the
command line functions cwtft2 and cwtftinfo2. Access the 2-D CWT app in the apps gallery by
selecting Wavelet Design & Analysis in the Signal Processing and Communications section or
entering

cwtfttool2

at the MATLAB command prompt.

2-D Continuous Wavelet Transform
The 2-D continuous wavelet transform is a representation of 2-D data (image data) in 4 variables:

dilation, rotation, and position. Dilation and rotation are real-valued scalars and position is a 2-D
vector with real-valued elements. Let x denote a two-element vector of real-numbers. If

f(x) € LAR?)

is square-integrable on the plane, the 2-D CWT is defined as

WTf(a, b, 6) = j%zf(x)%w(r_g(kb))dx a€R*, x,b € R?

a

where the bar denotes the complex conjugate and ry is the 2-D rotation matrix

cos(6) —sin(0)
sin(6) cos(0)

rg = 0 € [0, 2m)

The 2-D CWT is a space-scale representation of an image. You can view the inverse of the scale and
the rotation angle taken together as a spatial-frequency variable, which gives the 2-D CWT an
interpretation as a space-frequency representation. For all admissible 2-D wavelets, the 2-D CWT acts
as a local filter for an image in scale and position. If the wavelet is isotropic, there is no dependence
on angle in the analysis. The Mexican hat wavelet is an example of an isotropic wavelet. Isotropic
wavelets are suitable for pointwise analysis of images. If the wavelet is anisotropic, there is a
dependence on angle in the analysis, and the 2-D CWT acts a local filter for an image in scale,
position, and angle. The Cauchy wavelet is an example of an anisotropic wavelet. In the Fourier
domain, this means that the spatial frequency support of the wavelet is a convex cone with the apex
at the origin. Anisotropic wavelets are suitable for detecting directional features in an image. See
“Two-Dimensional CWT of Noisy Pattern” on page 2-71 for an illustration of the difference between
isotropic and anisotropic wavelets.

2-D CWT App Example

This example shows how to analyze an image using the 2-D CWT app.

Load the triangle image in the MATLAB workspace.

2-79

2 Continuous Wavelet Analysis

imdata = imread('triangle.jpg');

Launch the 2-D CWT app by selecting Wavelet Design & Analysis in the Signal Processing and
Communications section of the apps gallery. From the 2-D section, select Continuous Wavelet
Transform 2-D. Alternatively, enter

cwtfttool2
at the MATLAB command prompt.

Select File -> Import Data to import the imdata variable.

Continuous Wavelet Transform 2-D (Directional) =1 (S >
File View Inset Tools Window Help

Image imdata (128,128)

Analyzed Image Wavelst cauchy -

Parameter(s) [pi/6,4.000,4.000,1.000]
20 More on Parameters

n Angles Linearly Spaced Default -
B0

Scales Linear default]

a0

100 Analyze

120

Selection of Scales and Angles
20 40 B0 80 100 120

Select a couple (scale,angle)

1

Select among Scales or Angles

Colormap gray -
MNb. Colors d D 250

Brightness E +
el Jxe] on e v= -

From the Wavelet drop down menu, select the cauchy wavelet.
For the Angles and Scales, select the Manual option.

Click Define to specify a vector of angles. Select Manual from the Type drop-down list and specify a
vector of angles from 0 to 7*pi/8 radians in increments of pi/8 radians, 0:pi/8: (7*pi)/8. Click
Apply to apply your choice of angles.

2-80

2-D Continuous Wavelet Transform App

Continuous Wavelet Transform 2-D (Directional) o || = &
File View Inset Tools Window Help =
imdata (128,128)
Anahzed Image cauch
[pif6,4.000,4.000,1.000]
& More on Parameters
40 Manual Define
60 .
Wanual Define
80
100 Units of Angles Radians
120 Type Manual -
20 40 60 =] 100 120 PIB*(0:7)
| Defaults | | Cancel ‘ ‘ Apply ‘
aray
- View Axes Dyn Visu
Y

Click Define to specify a vector of scales from 0.5 to 4 in increments of 0.5. Select Linear from the
Type drop-down list. Set First Scale equal to 0.5, Gap between two scales equal to 0.5, and
Number of Scales equal to 8. Equivalently, you can select Manual from the Type drop-down list
and specify the vector of scales as 0.5:0.5:4. Click Apply to apply your choice of scales.

Click Analyze to obtain the 2-D CWT.

2-81

2 Continuous Wavelet Analysis

Continuous Wavelet Transform 2-D (Directional) [E=nE=R ===
File Edit View Inset Tools Window Help N
Scale: Index 1 - Value 0.500 -- Angle: Index 1 - Value 0 pi [rad] = 0.00 [dgr] Image imdata (128,128)
Analyzed Image Wavelet cauchy -
Parameter(s) [pi/6,4.000,4.000,1.000]
-1
.
40 e Angles anual -
B0 0.6 .
Scales Manual - Define
80 0.4
120 0
- Selection of Scales and
20 40 B0 a0 100 120 20 40 B0 a0 100 120
Modulus - Selecta counle
Index of Scale |1 T
Index of Angle | 4 -
-d0.g Selectamona Scales or

0.6
More on Angles

0.1
2
il Colormap gray v:

20 40 60 80 100120 20 40 6O 0 100 120 20 40 60 80 100120 Nb.Colors [~ [r]| 250

Realpar e sl signness [= [+]

EED

Set the Index of Scale to be 1 and click More on Angles. Click Movie to step through the
manually-defined angles for the 2-D CWT coefficients at scale 0.5.

Select File -> Export Data -> Export CWTFT Struct to Workspace to export the analysis to the
MATLAB workspace. You can find an explanation of the structure fields in the function reference for

cwtft2.

2-82

Discrete Wavelet Analysis

“Critically Sampled and Oversampled Wavelet Filter Banks” on page 3-2
“1-D Decimated Wavelet Transforms” on page 3-9

“Fast Wavelet Transform (FWT) Algorithm” on page 3-34

“Border Effects” on page 3-45

“Nondecimated Discrete Stationary Wavelet Transforms (SWTs)” on page 3-57
“1-D Stationary Wavelet Transform” on page 3-62

“Wavelet Changepoint Detection” on page 3-74

“Scale-Localized Volatility and Correlation” on page 3-85

“R Wave Detection in the ECG” on page 3-94

“Wavelet Cross-Correlation for Lead-Lag Analysis” on page 3-103

“1-D Multisignal Analysis” on page 3-114

“2-D Discrete Wavelet Analysis” on page 3-150

“2-D Stationary Wavelet Transform” on page 3-170

“Shearlet Systems” on page 3-180

“3-D Discrete Wavelet Analysis” on page 3-183

“Dual-Tree Complex Wavelet Transforms” on page 3-192

“Analytic Wavelets Using the Dual-Tree Wavelet Transform” on page 3-220
“Multifractal Analysis” on page 3-223

3 Discrete Wavelet Analysis

Critically Sampled and Oversampled Wavelet Filter Banks

3-2

In this section...

“Double-Density Wavelet Transform” on page 3-3
“Dual-Tree Complex Wavelet Transform” on page 3-5

“Dual-Tree Double-Density Wavelet Transforms” on page 3-7

Wavelet filter banks are special cases of multirate filter banks called tree-structured filter banks. In a
filter bank, two or more filters are applied to an input signal and the filter outputs are typically
downsampled. The following figure illustrates two stages, or levels, of a critically sampled two-
channel tree-structured analysis filter bank. The filters are depicted in the z domain.

A (2) l 2

H.@) lz

The filter system functions, ﬁo(z) and H;(2), are typically designed to approximately partition the

input signal, X, into disjoint subbands. In wavelet tree-structured filter banks, the filter Hy(2) is a
lowpass, or scaling, filter, with a non-zero frequency response on the interval [-11/2, /2] radians/
sample or [-1/4, 1/4] cycles/sample. The filter Hi@)isa highpass, or wavelet, filter, with a non-zero
frequency response on the interval [-1, -i/2] U [11/2, i] radians/sample or [-1/2, -1/4] U [1/4, 1/2]
cycles/sample. The filter bank iterates on the output of the lowpass analysis filter to obtain successive
levels resulting into an approximate octave-band filtering of the input. The two analysis filters are not
ideal, which results in aliasing that must be canceled by appropriately designed synthesis filters for
perfect reconstruction. For an orthogonal filter bank, the union of the scaling filter and its even shifts
and the wavelet filter and its even shifts forms an orthonormal basis for the space of square-

summable sequences, ¢%(Z). The synthesis filters are the time-reverse and conjugates of the analysis
filters. For biorthogonal filter banks, the synthesis filters and their even shifts form the reciprocal, or
dual, basis to the analysis filters. With two analysis filters, downsampling the output of each analysis
filter by two at each stage ensures that the total number of output samples equals the number of
input samples. The case where the number of analysis filters is equal to the downsampling factor is

Critically Sampled and Oversampled Wavelet Filter Banks

referred to as critical sampling. An analysis filter bank where the number of channels is greater than
the downsampling factor is an oversampled filter bank.

Double-Density Wavelet Transform

The following figure illustrates two levels of an oversampled analysis filter bank with three channels
and a downsampling factor of two. The filters are depicted in the z domain.

FID{?_) l 2

A.(2) l 2

A,@ |2

H,(2) l 2

Assume the filter H 0(2), is a lowpass half-band filter and the filters H 1(2) and H 2(2) are highpass half-
band filters.

Assume the three filters together with the corresponding synthesis filters form a perfect
reconstruction filter bank. If additionally, H 1(2) and H 2(2) generate wavelets that satisfy the following
relation

w1(t) = yolt — 1/2),

the filter bank implements the double-density wavelet transform. The preceding condition guarantees
that the integer translates of one wavelet fall halfway between the integer translates of the second
wavelet. In frame-theoretic terms, the double-density wavelet transform implements a tight frame
expansion.

3-3

3 Discrete Wavelet Analysis

3-4

The following code illustrates the two wavelets used in the double-density wavelet transform.

X = zeros(256,1);
df = dtfilters('filtersl');

wtl = dddtree('ddt',x,5,df,df);
wt2 = dddtree('ddt',x,5,df,df);
wtl.cfs{5}(5,1,1) = 1;
wt2.cfs{5}(5,1,2) = 1;

wavl = idddtree(wtl);

wav2 = idddtree(wt2);
plot(wavl); hold on;
plot(wav2,'r'); axis tight;
legend('\psi 1(t)"',"\psi 2(t)")

You cannot choose the two wavelet filters arbitrarily to implement the double-density wavelet
transform. The three analysis and synthesis filters must satisfy the perfect reconstruction (PR)
conditions. For three real-valued filters, the PR conditions are

H()(Z)H()(l/l) + Hl(Z)Hl(l/Z) + Hz(Z)Hz(l/Z) =2

Ho(2)Ho(= 1/2) + H1(z)H1(— 1/2) + Hy(2)Hy(—-1/2) =0

You can obtain wavelet analysis and synthesis frames for the double-density wavelet transform with 6
and 12 taps using dtfilters.

[dfl,sfl]
[df2,sf2]

dtfilters('filtersl');
dtfilters('filters2');

dfl and df2 are three-column matrices containing the analysis filters. The first column contains the
scaling filter and columns two and three contain the wavelet filters. The corresponding synthesis
filters are in sf1 and sf2.

See [4] and [5] for details on how to generate wavelet frames for the double-density wavelet
transform.

The main advantages of the double-density wavelet transform over the critically sampled discrete
wavelet transform are

* Reduced shift sensitivity

* Reduced rectangular artifacts in the 2-D transform

* Smoother wavelets for a given number of vanishing moments

The main disadvantages are

* Increased computational costs
* Non-orthogonal transform
Additionally, while exhibiting less shift sensitivity than the critically sampled DWT, the double-density

DWT is not shift-invariant like the complex dual-tree wavelet transform. The double-density wavelet
transform also lacks the directional selectivity of the oriented dual-tree wavelet transforms.

Critically Sampled and Oversampled Wavelet Filter Banks

Dual-Tree Complex Wavelet Transform

The critically sampled discrete wavelet transform (DWT) suffers from a lack of shift invariance in 1-D
and directional sensitivity in N-D. You can mitigate these shortcomings by using approximately
analytic wavelets. An analytic wavelet is defined as

we(t) = wir(t) + jyi(t)

where j denotes the unit imaginary. The imaginary part of the wavelet, y(t), is the Hilbert transform
of the real part, y(t). In the frequency domain, the analytic wavelet has support on only one half of
the frequency axis. This means that the analytic wavelet y(t) has only one half the bandwidth of the
real-valued wavelet y(t).

It is not possible to obtain exactly analytic wavelets generated by FIR filters. The Fourier transforms
of compactly supported wavelets cannot vanish on any set of nonzero measure. This means that the
Fourier transform cannot be zero on the negative frequency axis. Additionally, the efficient two-
channel filter bank implementation of the DWT derives from the following perfect reconstruction

condition for the scaling filter, Ho(ej“’), of a multiresolution analysis (MRA)

|Ho(e/)|* + |Hote/ @+ M) > = 2.

If the wavelet associated with an MRA is analytic, the scaling function is also analytic. This implies
that

Hy(e/®) =0 -m=w<0,

from which it follows that |H0(ej"’) |2 =2 0 =< w = . The result is that the scaling filter is allpass.

The preceding results demonstrate that you cannot find a compactly support wavelet determined by
FIR filters that is exactly analytic. However, you can obtain wavelets that are approximately analytic
by combining two tree-structured filter banks as long as the filters in the dual-tree transform are
carefully constructed to satisfy certain conditions [1],[6].

The dual-tree complex wavelet transform is implemented with two separate two-channel FIR filter
banks. The output of one filter bank is considered to be the real part, while the output of the other
filter bank is the imaginary part. Because the dual-tree complex wavelet transform uses two critically
sampled filter banks, the redundancy is 29 for a d-dimensional signal (image). There are a few critical
considerations in implementing the dual-tree complex wavelet transform. For convenience, refer to
the two trees as: Tree A and Tree B.

» The analysis filters in the first stage of each filter bank must differ from the filters used at
subsequent stages in both trees. It is not important which scaling and wavelet filters you use in
the two trees for stage 1. You can use the same first stage scaling and wavelet filters in both trees.

» The scaling filter in Tree B for stages = 2 must approximate a 1/2 sample delay of the scaling filter
in Tree A. The one-half sample delay condition is a necessary and sufficient condition for the
corresponding Tree B wavelet to be the Hilbert transform of the Tree A wavelet.[3].

The following figure illustrates three stages of the analysis filter bank for the 1-D dual-tree complex
wavelet transform. The FIR scaling filters for the two trees are denoted by {hg(n), go(n)}. The FIR

wavelet filters for the two trees are denoted by {h1(n), g1(n)}. The two scaling filters are designed to
approximately satisfy the half-sample delay condition

3 Discrete Wavelet Analysis

go(n) = ho(n —1/2)

The superscript (1) denotes that the first-stage filters must differ from the filters used in subsequent
stages. You can use any valid scaling-wavelet filter pair for the first stage. The filters {hg(n), go(n)}

cannot be arbitrary scaling filters and provide the benefits of using approximately analytic wavelets.

Tree A ¢ 2 P)

2 ()

— hllln{:rr} * 2 B(m
X
* 2 b (n) * 2 —
,.w-l-"..-----l-"""-'"'-'-'-'-I
— Ill:l:.ll{n*] * 2 FF___..._,_,..—F,—-—-—*-—"-I-"F"
.-l-..--.--_...--"_,_.....--""'""-"-— * 2 &l
—-—!..-nnl-"l-l"-'-“"-'——-—.
Tree B o
—{ 2(n) * 2 g ()
X
A *) () * 2—
] s ; 2—

2-D Dual-Tree Wavelet Transforms

The dual-tree wavelet transform with approximately analytic wavelets offers substantial advantages
over the separable 2-D DWT for image processing. The traditional separable 2-D DWT suffers from
checkerboard artifacts due to symmetric frequency support of real-valued (non-analytic) scaling
functions and wavelets. Additionally, the critically sampled separable 2-D DWT lacks shift invariance
just as the 1-D critically sampled DWT does. The Wavelet Toolbox software supports two variants of
the dual-tree 2-D wavelet transform, the real oriented dual-tree wavelet transform and the oriented 2-
D dual-tree complex wavelet transform. Both are described in detail in [6].

The real oriented dual-tree transform consists of two separable (row and column filtering) wavelet
filter banks operating in parallel. The complex oriented 2-D wavelet transform requires four

3-6

Critically Sampled and Oversampled Wavelet Filter Banks

separable wavelet filter banks and is therefore not technically a dual-tree transform. However, it is
referred to as a dual-tree transform because it is the natural extension of the 1-D complex dual-tree
transform. To implement the real oriented dual-tree wavelet transform, use the 'realdt' option in
dddtree2. To implement the oriented complex dual-tree transform, use the 'cplxdt' option.

Both the real oriented and oriented complex dual-tree transforms are sensitive to directional features
in an image. Only the oriented complex dual-tree transform is approximately shift invariant. Shift
invariance is not a feature possessed by the real oriented dual-tree transform.

Dual-Tree Double-Density Wavelet Transforms

The dual-tree double-density wavelet transform combines the properties of the double-density
wavelet transform and the dual-tree wavelet transform [2].

In 1-D, the dual-tree double-density wavelet transform consists of two three-channel filter banks. The
two wavelets in each tree satisfy the conditions described in “Double-Density Wavelet Transform” on
page 3-3. Specifically, the integer translates of one wavelet fall halfway between the integer
translates of the second wavelet. Additionally, the wavelets in Tree B are the approximate Hilbert
transform of the wavelets in Tree A. To implement the dual-tree double-density wavelet transform for
1-D signals, use the 'cplxdddt' option in dddtree. Similar to the dual-tree wavelet transform, the
dual-tree double-density wavelet transform provides both real oriented and complex oriented wavelet
transforms in 2-D. To obtain the real oriented dual-tree double-density wavelet transform, use the
'realdddt' option in dddtree2. To obtain the complex oriented dual-tree double-density wavelet
transform, use the 'cplxdddt' option.

References

[1] Kingsbury, N.G. “Complex Wavelets for Shift Invariant Analysis and Filtering of Signals”. Journal
of Applied and Computational Harmonic Analysis. Vol 10, Number 3, May 2001, pp. 234-253.

[2] Selesnick, I. “The Double-Density Dual-Tree Wavelet Transform”. IEEE® Transactions on Signal
Processing. Vol. 52, Number 5, May 2004, pp. 1304-1314.

[3] Selesnick, I. “The Design of Approximate Hilbert Transform Pairs of Wavelet Bases.” IEEE
Transactions on Signal Processing, Vol. 50, Number 5, pp. 1144-1152.

[4] Selesnick, I. “The Double Density DWT” Wavelets in Signal and Image Analysis: From Theory to
Practice (A.A Petrosian, F.G. Meyer, eds.). Norwell, MA: Kluwer Academic Publishers:, 2001.

[5] Abdelnour, F. “Symmetric Wavelets Dyadic Siblings and Dual Frames” Signal Processing, Vol. 92,
Number 5, 2012, pp. 1216-1225.

[6] Selesnick, I,. R.G Baraniuk, and N.G. Kingsbury. “The Dual-Tree Complex Wavelet Transform.”
IEEE Signal Processing Magazine. Vol. 22, Number 6, November, 2005, pp. 123-151.

[7] Vetterli, M. “Wavelets, Approximation, and Compression”. IEEE Signal Processing Magazine, Vol.
18, Number 5, September, 2001, pp. 59-73.

See Also
dualtree | dualtree2 | dddtree | dddtree2

3 Discrete Wavelet Analysis

More About

. “Dual-Tree Complex Wavelet Transforms” on page 3-192

3-8

1-D Decimated Wavelet Transforms

1-D Decimated Wavelet Transforms

This section takes you through the features of 1-D critically-sampled wavelet analysis using the

Wavelet Toolbox software.

The toolbox provides these functions for 1-D signal analysis. For more information, see the reference

pages.

Analysis-Decomposition Functions

Function Name Purpose

dwt Single-level decomposition

wavedec Decomposition

wmaxlev Maximum wavelet decomposition level

Synthesis-Reconstruction Functions

Function Name

Purpose

idwt Single-level reconstruction
waverec Full reconstruction
wrcoef Selective reconstruction
upcoef Single reconstruction

Decomposition Structure Utilities

Function Name

Purpose

detcoef Extraction of detail coefficients
appcoef Extraction of approximation coefficients
upwlev Recomposition of decomposition structure

Denoising and Compression

Function Name

Purpose

wdenoise Automatic wavelet signal denoising (recommended)
wdenoise2 Automatic wavelet image denoising (recommended)
ddencmp Provide default values for denoising and compression
wbmpen Penalized threshold for wavelet 1-D or 2-D denoising
wdcbm Thresholds for wavelet 1-D using Birgé-Massart strategy
wdencmp Wavelet denoising and compression

wden Automatic wavelet denoising

wthrmngr Threshold settings manager

In this section, you'll learn how to

3-9

3 Discrete Wavelet Analysis

* Load a signal

* Perform a single-level wavelet decomposition of a signal

* Construct approximations and details from the coefficients
» Display the approximation and detail

* Regenerate a signal by inverse wavelet transform

* Perform a multilevel wavelet decomposition of a signal

» Extract approximation and detail coefficients

* Reconstruct the level 3 approximation

* Reconstruct the level 1, 2, and 3 details

» Display the results of a multilevel decomposition

* Reconstruct the original signal from the level 3 decomposition
* Remove noise from a signal

* Refine an analysis

* Compress a signal

+ Show a signal's statistics and histograms

Since you can perform analyses either from the command line or using the Wavelet Analyzer app, this
section has subsections covering each method.

The final subsection discusses how to exchange signal and coefficient information between the disk
and the graphical tools.

1-D Analysis Using the Command Line

This example involves a real-world signal — electrical consumption measured over the course of 3
days. This signal is particularly interesting because of noise introduced when a defect developed in
the monitoring equipment as the measurements were being made. Wavelet analysis effectively
removes the noise.

Note To denoise a signal, wdenoise and Wavelet Signal Denoiser are recommended.

1 Load the signal and select a portion for wavelet analysis.
load leleccum;

s = leleccum(1:3920);
1_s = length(s);

2 Perform a single-level wavelet decomposition of a signal.
Perform a single-level decomposition of the signal using the db1 wavelet.
[cAl,cD1] = dwt(s, 'dbl");

This generates the coefficients of the level 1 approximation (cAl) and detail (cD1).
3 Construct approximations and details from the coefficients.

To construct the level 1 approximation and detail (A1 and D1) from the coefficients cAl and cD1,
type

3-10

1-D Decimated Wavelet Transforms

Al = upcoef('a',cAl,'dbl',1,1 s);
D1 = upcoef('d',cDl,'db1l',1,1 s);
or

Al = idwt(cAl,[],'dbl"',1 s);

D1 = idwt([],cD1,'dbl',1 s);

Display the approximation and detail.

To display the results of the level-one decomposition, type

subplot(1,2,1); plot(Al); title('Approximation Al')
subplot(1,2,2); plot(Dl); title('Detail D1')

Approximation A1 Detail D1
550 1 T 25 .
500 - ’L - 201
450+ | | 181
| 10|
400 1
Lo
350
| 0
300 | | -
250 | || |)
| l | 10+
y | |
200+ \ sl
150 ¢ 20}
100° ! -25° '
0 2000 4000 0 2000 4000

Regenerate a signal by using the Inverse Wavelet Transform.

To find the inverse transform, enter

AQ = idwt(cAl,cD1,'dbl',l s);
err = max(abs(s-AQ))

Perform a multilevel wavelet decomposition of a signal.
To perform a level 3 decomposition of the signal (again using the db1 wavelet), type
[C,L] = wavedec(s,3, " 'dbl");

The coefficients of all the components of a third-level decomposition (that is, the third-level
approximation and the first three levels of detail) are returned concatenated into one vector, C.
Vector L gives the lengths of each component.

3-11

3 Discrete Wavelet Analysis

3-12

<Dz -
e [

2

Extract approximation and detail coefficients.
To extract the level 3 approximation coefficients from C, type
cA3 = appcoef(C,L, 'dbl"',3);

To extract the levels 3, 2, and 1 detail coefficients from C, type

cD3 = detcoef(C,L,3);
cD2 = detcoef(C,L,2);
cD1 = detcoef(C,L,1);
or

[cD1,cD2,cD3] = detcoef(C,L,[1,2,3]);
Reconstruct the Level 3 approximation and the Level 1, 2, and 3 details.

To reconstruct the level 3 approximation from C, type
A3 = wrcoef('a',C,L,'dbl',3);

To reconstruct the details at levels 1, 2, and 3, from C, type

D1 = wrcoef('d',C,L,"'dbl',1);
D2 = wrcoef('d',C,L,"'dbl',2);
D3 = wrcoef('d',C,L,"'dbl',3);

Display the results of a multilevel decomposition.

To display the results of the level 3 decomposition, type

subplot(2,2,1); plot(A3);
title('Approximation A3"')
subplot(2,2,2); plot(Dl);
title('Detail D1')
subplot(2,2,3); plot(D2);
title('Detail D2')
subplot(2,2,4); plot(D3);
title('Detail D3')

1-D Decimated Wavelet Transforms

10

11

Approximation A3 Detail D1
. 40

600

300 |I | |I [\ |
A
200 || f
\
100 : 40 -
0 2000 4000 1] 2000 4000
Detail D2 Detail D3
40 40
201
0
I
-20
40 -40
0 2000 4000 0 2000 4000

Reconstruct the original signal from the Level 3 decomposition.

To reconstruct the original signal from the wavelet decomposition structure, type

AO = waverec(C,L, 'dbl"');
err = max(abs(s-A0))

Crude denoising of a signal.

Using wavelets to remove noise from a signal requires identifying which component or
components contain the noise, and then reconstructing the signal without those components.

In this example, we note that successive approximations become less and less noisy as more and
more high-frequency information is filtered out of the signal.

The level 3 approximation, A3, is quite clean as a comparison between it and the original signal.

To compare the approximation to the original signal, type
subplot(2,1,1);plot(s);title('Original'); axis off

subplot(2,1,2);plot(A3);title('Level 3 Approximation');
axis off

3-13

3 Discrete Wavelet Analysis

Original

Il

J W \\f\

Level 3 Approximation
M\
-ﬁ Ifrr IJMWF l,ff)\'\m
A f /\; -
% / ;‘f \

Of course, in discarding all the high-frequency information, we've also lost many of the original
signal's sharpest features.

o

!

Optimal denoising requires a more subtle approach called thresholding. This involves discarding
only the portion of the details that exceeds a certain limit.

12 Remove noise by thresholding.
Let's look again at the details of our level 3 analysis.

To display the details D1, D2, and D3, type

subplot(3,1,1); plot(D1l); title('Detail Level 1'); axis off
subplot(3,1,2); plot(D2); title('Detail Level 2'); axis off
subplot(3,1,3); plot(D3); title('Detail Level 3'); axis off

3-14

1-D Decimated Wavelet Transforms

Detail Level 1

Detail Level 2

%Mw_»_

Detail Level 3

M—%HHHMMW

Most of the noise occurs in the latter part of the signal, where the details show their greatest
activity. What if we limited the strength of the details by restricting their maximum values? This
would have the effect of cutting back the noise while leaving the details unaffected through most
of their durations. But there's a better way.

Note that cD1, cD2, and cD3 are just MATLAB vectors, so we could directly manipulate each
vector, setting each element to some fraction of the vectors' peak or average value. Then we
could reconstruct new detail signals D1, D2, and D3 from the thresholded coefficients.

To denoise the signal, use the ddencmp command to calculate the default parameters and the
wdencmp command to perform the actual denoising, type

[thr,sorh, keepapp] = ddencmp('den','wv',s);
clean = wdencmp('gbl',C,L,'dbl',3,thr,sorh, keepapp);

Note that wdencmp uses the results of the decomposition (C and L) that we already calculated.
We also specify that we used the db1l wavelet to perform the original analysis, and we specify the
global thresholding option 'gb1l'. See ddencmp and wdencmp in the reference pages for more
information about the use of these commands.

To display both the original and denoised signals, type

subplot(2,1,1); plot(s(2000:3920)); title('Original')
subplot(2,1,2); plot(clean(2000:3920)); title('denoised')

3-15

3 Discrete Wavelet Analysis

3-16

Original
600 :
500 ™\,
400} 'I-\

300 } "m \\
200+ S

100 L L
0 500 1000 1500 2000
denoised
600 ; - ; .
500 -‘""LW

| \\ |
400 'w..\\ lrf‘a
300 - +

200 -

100" - : :
0 500 1000 1500 2000

We've plotted here only the noisy latter part of the signal. Notice how we've removed the noise
without compromising the sharp detail of the original signal. This is a strength of wavelet
analysis.

While using command line functions to remove the noise from a signal can be cumbersome, the
software's Wavelet Analyzer app includes an easy-to-use denoising feature that includes
automatic thresholding.

More information on the denoising process can be found in the following sections:

* “1-D Analysis Using the Wavelet Analyzer App” on page 3-16

* “Wavelet Denoising and Nonparametric Function Estimation” on page 6-2 in the Wavelet
Toolbox User's Guide

* “1-D Adaptive Thresholding of Wavelet Coefficients” on page 6-39

* “1-D Wavelet Variance Adaptive Thresholding” on page 6-13 in the Wavelet Toolbox User's
Guide

1-D Analysis Using the Wavelet Analyzer App

In this section, we explore the same electrical consumption signal as in the previous section, but we
use the Wavelet Analyzer app to analyze and denoise the signal.

Note Using the Wavelet Analyzer app to denoise a signal is no longer recommended. Use Wavelet
Signal Denoiser instead.

1-D Decimated Wavelet Transforms

2

Start the 1-D Wavelet Analysis Tool.
From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.

4 Wavelet Analyzer

File Window Help

One-Dimensional

Wavelet 1-D
Wavelet Packet 1D
Continuous Wavelet 1-D

Complex Continuous Wavelet 1-D

Specialized Tools 1.0
SWT Denoising 1-D
Density Estimation 1-D
Regression Estimation 1-D
Wavelet Coefficients Selection 1-D
Matching Pursuit 1-D

Two-Dimensional
Wavelet 2D
Wavelet Packet 2D

Continuous Wavelet Transform 2-D

Three Dimensional

Wavelet 3D

Multipie 1-0
Wultisignal Analysis 1-D

Wultivariate Denoising

Wuttiscale Princ. Comp. Analysis

Specialized Tools 2-D
True Compression 2-D
SWT Denoising 2D

Wavelet Coefficients Selection 2-D

Image Fusion

Close

Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for 1-D signal data appears.

Load a signal.

At the MATLAB command prompt, type

3-17

3 Discrete Wavelet Analysis

3-18

load leleccum;

In the Wavelet 1-D tool, select File > Import from Workspace. When the Import from
Workspace dialog box appears, select the Leleccum variable. Click OK to import the electrical
consumption signal.

Perform a single-level wavelet decomposition.

To start our analysis, let's perform a single-level decomposition using the db1 wavelet, just as we
did using the command-line functions in “1-D Analysis Using the Command Line” on page 3-10.

In the upper right portion of the Wavelet 1-D tool, select the db1 wavelet and single-level
decomposition.

Data (Size) leleccum (4320)
Wizrvelet dh - 1 -
Level 1 -
Analyze
Click the Analyze button.

After a pause for computation, the tool displays the decomposition.

Decomposttion at level 1: 5 =a1 +c .

L L L L L L L L
500 1000 1500 2000 2500 3000 3500 4000

Zoom in on relevant detail.

One advantage of using the Wavelet Analyzer app is that you can zoom in easily on any part of
the signal and examine it in greater detail.

Drag a rubber band box (by holding down the left mouse button) over the portion of the signal
you want to magnify. Here, we've selected the noisy part of the original signal.

1-D Decimated Wavelet Transforms

Decomposition at level 1 : = =al +d1 .

=00
400

%DD

200

Click the X+ button (located at the bottom of the screen) to zoom horizontally.

K —W— _}W+ Center EaEs X I'E'I == Wiewe Sxes
[[- J[xv-]1] on Info W= History [<

The Wavelet 1-D tool zooms all the displayed signals.

Bl wavelet 1-0
File View Insert Tools ‘Window Help
Decomposition at level 1 5 = al +d1

00
400
S0

200

500
400

a,
oo

200

20 L L L L L L L
2200 2400 2600 2800 3000 3200 3400 3600

The other zoom controls do more or less what you'd expect them to. The X- button, for example,
zooms out horizontally. The history function keeps track of all your views of the signal. Return to
a previous zoom level by clicking the left arrow button.

Perform a multilevel decomposition.

Again, we'll use the graphical tools to emulate what we did in the previous section using
command line functions. To perform a level 3 decomposition of the signal using the db1 wavelet:

Select 3 from the Level menu at the upper right, and then click the Analyze button again.

3-19

3 Discrete Wavelet Analysis

3-20

Data leleccum (43200
WavElEt | g - || -

Lewvel 3 -

Analyze

After the decomposition is performed, you'll see a new analysis appear in the Wavelet 1-D tool.

Selecting Different Views of the Decomposition

The Display mode menu (middle right) lets you choose different views of the wavelet
decomposition.

Dizplay mode
Full Decomposition -

at levels 3 -

[] Showe Synthesized Sig.

The default display mode is called “Full Decomposition Mode.” Other alternatives include:

* “Separate Mode,” which shows the details and the approximations in separate columns.

* “Superimpose Mode,” which shows the details on a single plot superimposed in different
colors. The approximations are plotted similarly.

* “Tree Mode,” which shows the decomposition tree, the original signal, and one additional
component of your choice. Click on the decomposition tree to select the signal component
you'd like to view.

* “Show and Scroll Mode,” which displays three windows. The first shows the original signal
superimposed on an approximation you select. The second window shows a detail you select.
The third window shows the wavelet coefficients.

* “Show and Scroll Mode (Stem Cfs)” is very similar to the “Show and Scroll Mode” except that
it displays, in the third window, the wavelet coefficients as stem plots instead of colored
blocks.

You can change the default display mode on a per-session basis. Select the desired mode from
the View > Default Display Mode submenu.

Note The Compression and Denoising windows opened from the Wavelet 1-D tool will inherit
the current coefficient visualization attribute (stems or colored blocks).

Depending on which display mode you select, you may have access to additional display options
through the More Display Options button.

1-D Decimated Wavelet Transforms

Display mode
Showe and Scroll -

App. |4 - Det. |4 -

More Dizplay Options

These options include the ability to suppress the display of various components, and to choose
whether or not to display the original signal along with the details and approximations.

Remove noise from a signal.

The Wavelet Analyzer app features a denoising option with a predefined thresholding strategy.
This makes it very easy to remove noise from a signal.

Note The denoising option is no longer recommended. Use Wavelet Signal Denoiser instead.

Bring up the denoising tool: click the denoise button, located in the middle right of the window,
underneath the Analyze button.

| Analyze |

| Statistics | | Compress |

| Histograms | | De-noize |

The Wavelet 1-D Denoising window appears.

While a number of options are available for fine-tuning the denoising algorithm, we'll accept the
defaults of soft fixed form thresholding and unscaled white noise. The Unscaled white noise
option corresponds to setting the multiplicative threshold input argument SCAL of wden to
'one'. Choosing Scaled white noise correspondsto 'sln', and Non-white noise
corresponds to 'mln'. For more information, see wden.

Continue by clicking the denoise button.

The denoised signal appears superimposed on the original. The tool also plots the wavelet
coefficients of both signals. The original detail coefficients appear on the left side of the display.
In order to time align decomposition levels across all scales, wavelet coefficients are replicated at
each scale to account for the missing time points. Therefore, as the scale becomes coarser, the
coefficients assume a staircase-like appearance.

3-21

3 Discrete Wavelet Analysis

Original interpolated detail coafficients

&0 |

1000 2000

X+ ¥+ X'+
X- - K- On

Zoom in on the plot of the original and denoised signals for a closer look.

Center

3000

X

Y

Info

Lawval numbar

Lawval numbar

X =
W =

Original and de-noisad signals

1000

2000

3000

Original cosafficiants

1000

Threshaldad coafliciants

1000

History

2000

2000

3000

3000

4000

4000

4000

View Axes

Data (Size) leleccum (4320}
Wavelet db 1
Level 3

Select thresholding
Fied formthr...

®.. O.
Select noise
Unscaled whi..
Lew Int Select Thresh
3 |q |l 1 4059

w| oL +1[4058
w oL T +1[4059

2 |4
11

Int. dependent threshold settings

Reszidualz

Wiew Dencised Signal

Colorma | pink

Nb. I 1125

Close

Drag a rubber band box around the pertinent area, and then click the XY+ button.

The denoise window magnifies your view. By default, the original signal is shown in red, and the
denoised signal in yellow.

3-22

1-D Decimated Wavelet Transforms

Original and de-noised signals

a00

400

300

200

2000 2500 3000 3500 4000
Dismiss the Wavelet 1-D Denoising window: click the Close button.

You cannot have the denoise and Compression windows open simultaneously, so close the
Wavelet 1-D Denoising window to continue. When the Update Synthesized Signal dialog box
appears, click No. If you click Yes, the Synthesized Signal is then available in the Wavelet 1-D
main window.

Refine the analysis.
The graphical tools make it easy to refine an analysis any time you want to. Up to now, we've

looked at a level 3 analysis using db1. Let's refine our analysis of the electrical consumption
signal using the db3 wavelet at level 5.

Select 5 from the Level menu at the upper right, and select the db3 from the Wavelet menu.
Click the Analyze button.
Compress the signal.

The graphical interface tools feature a compression option with automatic or manual
thresholding.

| Analyze |

| Statistics | | Compress |

| Histograms | | De-noize |

Bring up the Compression window: click the Compress button, located in the middle right of
the window, underneath the Analyze button.

The Compression window appears.

While you always have the option of choosing by level thresholding, here we'll take advantage of
the global thresholding feature for quick and easy compression.

Note If you want to experiment with manual thresholding, choose the By Level thresholding
option from the menu located at the top right of the Wavelet 1-D Compression window. The
sliders located below this menu then control the level-dependent thresholds, indicated by yellow

3-23

3 Discrete Wavelet Analysis

3-24

dotted lines running horizontally through the graphs on the left of the window. The yellow dotted
lines can also be dragged directly using the left mouse button.

Click the Compress button, located at the center right.

After a pause for computation, the electrical consumption signal is redisplayed in red with the
compressed version superimposed in yellow. Below, we've zoomed in to get a closer look at the
noisy part of the signal.

Retained energy 99.98 % -- Zero= §7.50 %
Crriginal and compressed signals

00

400

300

200

1000 2000 3000 4000

You can see that the compression process removed most of the noise, but preserved 99.99% of
the energy of the signal.

Show the residuals.

From the Wavelet 1-D Compression tool, click the Residuals button. The More on Residuals
for Wavelet 1-D Compression window appears.

1-D Decimated Wavelet Transforms

Residuals Dala lelaccum (4320)
2l) ' ') ' Wavelet | db 1
Level 3
]
an i ; i i ; i ; i
S00 1000 1500 200 2500 3000 3500 4000 zErrsl
- Histograms ’ Cumulative histogram] Histogram snd Cum
0.08
0.04 0s < Atocorrelations and ..
0.02
] 0 - .
A0 5] 5 10 -10 5 il 5 10 || Descriptive Statistics
Autocorrelations 10> FFT - Spectrum
1 10
Wumber of | 50
1&
05 T s
=
Wl
]
' : 0
=200 -100 1] 100 200 1] 041 02 03 04

Freguency

Mean 5ATde-12 Maximu | 11,25 Standard 2659 L1 norm | 8851

Mediz

Mean | 01788 @ Range 21.56 Mean Abs. 2003 Poax 1125

) Winimum .03 Median Abs. | 1526 L2rorm| 1748

10

Displayed statistics include measures of tendency (mean, mode, median) and dispersion (range,
standard deviation). In addition, the tool provides frequency-distribution diagrams (histograms
and cumulative histograms), as well as time-series diagrams: autocorrelation function and
spectrum. The same feature exists for the Wavelet 1-D Denoising tool.

Dismiss the Wavelet 1-D Compression window: click the Close button. When the Update
Synthesized Signal dialog box appears, click No.

Show statistics.
You can view a variety of statistics about your signal and its components.

From the Wavelet 1-D tool, click the Statistics button.

| Analyze |

| Statistics | | Compress |

| Histograms | | De-noize |

The Wavelet 1-D Statistics window appears displaying by default statistics on the original
signal.

3-25

3 Discrete Wavelet Analysis

leleccum (4320 values) anaiyzed at level 3 with dot. Componerts: 1-=8320 [Ingts leleccum (4320)
Oviginel Signel Wavelet | do 1

ﬂ\ o e

" f ! ‘\' b @ Originad Signal
300 / *'I l\\ / VH ﬂ‘“\ Synnesized sig...
K W A

200 Approvimations:
Detsilz
500 1000 1500 2000 2500 3000 3500 4000
Histagrom Cumuive fistogram Numper of 30
1
o Show statist
- ow stetistics
006
06
0
04
002 02
0
200 300 400 500 200 300 400 500
Mean | 3395 | Maximu| 5474 | Stadlerd | 1077 | L1 1467esn
Media| 3318 | Minimu | 1218 | MedionAbs| 8813 | L2 2341e+dl
Mesn | 3275 | Renge [4256 | MeanAbs [(8325 | Max | 5474 Coss

Select the synthesized signal or signal component whose statistics you want to examine. Click
the appropriate option button, and then click the Show Statistics button. Here, we've chosen to
examine the synthesized signal using 100 bins instead of 30, which is the default:

lelecoum (4320 vahes) analyzed of level 3 with db. Components: 1--»4320 [lpsts Ieleccum (4320
Synthesized signal (Wavelet db 1
A~ Level 3
500 I)
" / I,
400 1 IrJ |I Y Origirval Signeil
| hay Ny
ol | W | W Iril\ @ Syrthesized sig
\ / L / Y f)
] \J J Ir .y, Agproximations
L L " . . Sl . Detals
500 1000 1500 2000 2500 3000 3500 4000
Histogram Curmistive Fistogram Pumber of 100
1
Show statistics
+3 08 l—
- 08
04
oo
02
o o
200 300 400 500 200 300 400 500
Mesn | 339.5 | Maximu| 5455 | Standard | 1078 | L1 1.467es0)
Media 331 | Minimu [1321 | Median Abs| B576 | L2 2.3#1e40)
Mesn 3318 | Range | 4133 | MesnAbs. 8917 | Max 5455 (Close

Displayed statistics include measures of tendency (mean, mode, median) and dispersion (range,
standard deviation).

In addition, the tool provides frequency-distribution diagrams (histograms and cumulative
histograms). You can plot these histograms separately using the Histograms button from the
Wavelets 1-D window.

Click the Approximation option button. A menu appears from which you choose the level of the
approximation you want to examine.

3-26

1-D Decimated Wavelet Transforms

@ Approximations

Detailz

Approximation st

Lewvel 1

Coefficients

@ Reconstructed

Select Level 1 and again click the Show Statistics button.

approximation.

Racunsvucteu wmxmamn atlevel1

3 ™ W/

\f\wf:

Histogram

2500 3000 3500 4000

Cumudative histogram

Statistics appear for the level 1

Importing and Exporting Information from the Wavelet Analyzer App

The Wavelet 1-D graphical interface tool lets you import information from and export information to
disk and the MATLAB workspace.

Saving Information to Disk

You can save synthesized signals, coefficients, and decompositions from the Wavelet 1-D tool to the
disk, where the information can be manipulated and later reimported into the graphical tool.

Wavelet 1-D

Wiew Insert Tools Window Help

Load 3
Save >
Exarnple Analysis 4

Irmport from YWorkspace #
Export to Workspace [
Expart Setup..

Print Toals 3

Close

Sinnal and Anmrocdimation st leweal

Signal %

Coefficients
Decomposition I
Approximations 3

Coefficient of Approximations »

| | |
1500 2000 2500

3-27

3 Discrete Wavelet Analysis

3-28

Saving Synthesized Signals

You can process a signal in the Wavelet 1-D tool and then save the processed signal to a MAT-file
(with extension mat or other).

For example, load the example analysis: File > Example Analysis > Basic Signals > with db3 at
level 5 » Sum of sines, and perform a compression or denoising operation on the original signal.
When you close the Denoising or Compression window, update the synthesized signal by clicking
Yes in the dialog box.

Then, from the Wavelet 1-D tool, select the File > Save > Signal menu option.

A dialog box appears allowing you to select a folder and filename for the MAT-file. For this example,
choose the name synthsig.

To load the signal into your workspace, simply type
load synthsig;

When the synthesized signal is obtained using any thresholding method except a global one, the
saved structure is

whos

Name Size Bytes Class
synthsig 1x1000 8000 double array
thrParams 1x5 580 cell array
wname 1x3 6 char array

The synthesized signal is given by the variable synthsig. In addition, the parameters of the
denoising or compression process are given by the wavelet name (wname) and the level dependent
thresholds contained in the thrParams variable, which is a cell array of length 5 (same as the level
of the decomposition).

For i from 1 to 5, thrParams{i} contains the lower and upper bounds of the thresholding interval
and the threshold value (since interval dependent thresholds are allowed, see “1-D Adaptive
Thresholding of Wavelet Coefficients” on page 6-39).

For example, for level 1,
thrParams{1}

ans =
1.0e+03 *

0.0010 1.0000 0.0014

When the synthesized signal is obtained using a global thresholding method, the saved structure is

Name Size Bytes Class
synthsig 1x1000 8000 double array
valTHR 1x1 8 double array
wname 1x3 6 char array

where the variable valTHR contains the global threshold:

1-D Decimated Wavelet Transforms

valTHR

valTHR =
1.2922

Saving Discrete Wavelet Transform Coefficients

The Wavelet 1-D tool lets you save the coefficients of a discrete wavelet transform (DWT) to disk.
The toolbox creates a MAT-file in the current folder with a name you choose.

To save the DWT coefficients from the present analysis, use the menu option File > Save >
Coefficients.

A dialog box appears that lets you specify a folder and filename for storing the coefficients.
Consider the example analysis:

File > Example Analysis > Basic Signals > with db1 at level 5 - Cantor curve.

After saving the wavelet coefficients to the file cantor.mat, load the variables in the workspace:

load cantor

whos

Name Size Bytes Class

coefs 1x2190 17520 double array
longs 1x7 56 double array
thrParams 0x0 0 double array
wname 1x3 6 char array

Variable coefs contains the discrete wavelet coefficients. More precisely, in the above example
coefs is a 1-by-2190 vector of concatenated coefficients, and longs is a vector giving the lengths of
each component of coefs.

Variable wname contains the wavelet name and thrParams is empty since the synthesized signal
does not exist.

Saving Decompositions

The Wavelet 1-D tool lets you save the entire set of data from a discrete wavelet analysis to disk. The
toolbox creates a MAT-file in the current folder with a name you choose, followed by the extension
wal (wavelet analysis 1-D).

Open the Wavelet 1-D tool and load the example analysis:
File > Example Analysis > Basic Signals > with db3 at level 5 - Sum of sines
To save the data from this analysis, use the menu option File > Save > Decomposition.

A dialog box appears that lets you specify a folder and filename for storing the decomposition data.
Type the name wdecex1d.

After saving the decomposition data to the file wdecex1d.wal, load the variables into your
workspace:

3-29

3 Discrete Wavelet Analysis

load wdecexld.wal -mat

whos

Name Size Bytes Class

coefs 1x1023 8184 double array
data name 1x6 12 char array
longs 1x7 56 double array
thrParams 0x0 0 double array
wave name 1x3 6 char array

Note Save options are also available when performing denoising or compression inside the Wavelet
1-D tool. In the Wavelet 1-D Denoising window, you can save denoised signal and decomposition.
The same holds true for the Wavelet 1-D Compression window. This way, you can save many
different trials from inside the Denoising and Compression windows without going back to the main
Wavelet 1-D window during a fine-tuning process.

Note When saving a synthesized signal, a decomposition or coefficients to a MAT-file, the mat file
extension is not necessary. You can save approximations individually for each level or save them all at
once.

Export to Workspace

The Wavelet 1-D tool allows you to export your 1-D wavelet analysis to the MATLAB workspace in a
number of formats.

For example, load the example analysis for the freqgbrk signal.

Bl Wavelet1-D
Edit View Insert Tools Window Help
Load 3

Save 3

Example Analysis 3 Basic Signals 3 with db3 at level 5 ---> Sum of sines
Import from Workspace » Moisy Signals - Constant Neise Variance 3 with db5 at level 5 ---> Frequency breakdown Ik
Export to Workspace [3 Moisy Signals - Interval Dependent Moise Variance » with db3 at level 5 ---> Uniform white noise

After the wavelet 1-D analysis loads, select File —> Export to Workspace.

Bl Wavelet1-D
Edit View Inset Tools Window Help

Load »

Save 3

T I
Example Analysis »
Import from Workspace »

Export to Workspace » Export Signal L\\)

Export Setup... Export Coefficients

Print Tools » Export Decomposition

Close Export All Approximations ([al ; .. ; an])
A nli R Export All Details ([d1; ...; dn])

You have the option to

3-30

1-D Decimated Wavelet Transforms

* Export Signal — This option exports the synthesized signal vector.

* Export Coefficients — This option exports the vector of wavelet and scaling coefficients, the
bookkeeping vector, and the analyzing wavelet in a structure array. The wavelet and scaling
coefficient and bookkeeping vectors are identical to the output of wavedec.

* Export Decomposition — This option is identical to Export Coefficients except that it also
contains the name of the analyzed signal.

* Export ALl Approximations — This option exports a L-by-N matrix where L is the value of
Level and N is the length of the input signal. Each row of the matrix is the projection onto the
approximation space at the corresponding level. For example, the first row of the matrix is the
projection onto the approximation space at level 1.

* Export ALl Details — This option exports a L-by-N matrix where L is the value of Level and N
is the length of the input signal. Each row of the matrix is the projection onto the detail (wavelet)
space at the corresponding level. For example, the first row of the matrix is the projection onto the
detail space at level 1.

Loading Information into the Wavelet 1-D Tool

You can load signals, coefficients, or decompositions into the Wavelet Analyzer app. The information
you load may have been previously exported from the app and then manipulated in the workspace, or
it may have been information you generated initially from the command line.

In either case, you must observe the strict file formats and data structures used by the Wavelet 1-D
tool, or else errors will result when you try to load information.

Waveletl-D
Wiew Insert Tools Window Help

Signal %

Coefficients

Load 3

Save »

Exarmple &nalysis 3 Decomposition
Irmport from Workspace »

Export to Workspace 3

Export Setup..,

Frint Toaols 3

Close

Loading Signals

To load a signal you've constructed in your MATLAB workspace into the Wavelet 1-D tool, save the
signal in a MAT-file (with extension mat or other).

For instance, suppose you've designed a signal called warma and want to analyze it in the Wavelet 1-
D tool.

save warma warma
The workspace variable warma must be a vector.

sizwarma size(warma)

sizwarma

1 1000
To load this signal into the Wavelet 1-D tool, use the menu option File > Load > Signal.

A dialog box appears that lets you select the appropriate MAT-file to be loaded.

3-31

3 Discrete Wavelet Analysis

Note The first 1-D variable encountered in the file is considered the signal. Variables are inspected in
alphabetical order.

Loading Discrete Wavelet Transform Coefficients

To load discrete wavelet transform coefficients into the Wavelet 1-D tool, you must first save the
appropriate data in a MAT-file, which must contain at least the two variables coefs and longs.

Variable coefs must be a vector of DWT coefficients (concatenated for the various levels), and
variable longs a vector specifying the length of each component of coefs, as well as the length of
the original signal.

Decomposition coefs

e
1000 e e
= _
501 ﬂ; \-. Hx \1. r"lr
cDz [127 [137 | 252 | 501 | 1000 |
Py = = Tongs

127 127

After constructing or editing the appropriate data in your workspace, type
save myfile coefs longs

Use the File > Load > Coefficients menu option from the Wavelet 1-D tool to load the data into the
graphical tool.

A dialog box appears, allowing you to choose the folder and file in which your data reside.

Loading Decompositions

To load discrete wavelet transform decomposition data into the Wavelet 1-D graphical interface, you
must first save the appropriate data in a MAT-file (with extension wal or other).

The MAT-file contains the following variables.

Variable Status Description
coefs Required Vector of concatenated DWT coefficients
longs Required Vector specifying lengths of components of coefs

and of the original signal

wave name Required Character vector specifying name of wavelet used
for decomposition (e.g., db3)

data name Optional Character vector specifying name of decomposition

After constructing or editing the appropriate data in your workspace, type

save myfile coefs longs wave name

Use the File > Load > Decomposition menu option from the Wavelet 1-D tool to load the
decomposition data into the graphical tool.

A dialog box appears, allowing you to choose the folder and file in which your data reside.

3-32

1-D Decimated Wavelet Transforms

Note When loading a signal, a decomposition or coefficients from a MAT-file, the extension of this file
is free. The mat extension is not necessary.

See Also
Wavelet Signal Denoiser | wdenoise

More About

. “Denoise a Signal with the Wavelet Signal Denoiser” on page 6-25

3-33

3 Discrete Wavelet Analysis

Fast Wavelet Transform (FWT) Algorithm

In 1988, Mallat produced a fast wavelet decomposition and reconstruction algorithm [1]. The Mallat
algorithm for discrete wavelet transform (DWT) is, in fact, a classical scheme in the signal processing
community, known as a two-channel subband coder using conjugate quadrature filters or quadrature
mirror filters (QMFs).

* The decomposition algorithm starts with signal s, next calculates the coordinates of A; and D;, and
then those of A, and D,, and so on.

* The reconstruction algorithm called the inverse discrete wavelet transform (IDWT) starts from the
coordinates of A; and Dy, next calculates the coordinates of A;;, and then using the coordinates of
A;; and Dy calculates those of Ay, and so on.

This section addresses the following topics:

» “Filters Used to Calculate the DWT and IDWT” on page 3-34
» “Algorithms” on page 3-36

* “Why Does Such an Algorithm Exist?” on page 3-40

* “1-D Wavelet Capabilities” on page 3-43

+ “2-D Wavelet Capabilities” on page 3-44

Filters Used to Calculate the DWT and IDWT

For an orthogonal wavelet, in the multiresolution framework, we start with the scaling function ¢ and
the wavelet function y. One of the fundamental relations is the twin-scale relation (dilation equation
or refinement equation):

20(3) = 3 wabx =)

nez

All the filters used in DWT and IDWT are intimately related to the sequence

(Wn)nEZ

Clearly if ¢ is compactly supported, the sequence (w,) is finite and can be viewed as a filter. The filter
W, which is called the scaling filter (nonnormalized), is

* Finite Impulse Response (FIR)

* Oflength 2N

e Ofsum1

Of norm %

* Ofnorm 1
* A low-pass filter
For example, for the db3 scaling filter,

load db3
db3
db3 =

3-34

Fast Wavelet Transform (FWT) Algorithm

0.2352 0.5706 0.3252 -0.0955 -0.0604 0.0249

sum(db3)
ans =
1.0000

norm(db3)
ans =
0.7071

From filter W, we define four FIR filters, of length 2N and of norm 1, organized as follows.

Filters Low-Pass High-Pass
Decomposition Lo D Hi D
Reconstruction Lo R Hi R

The four filters are computed using the following scheme.

W

l

Lo R= W > Lo D =wreviLo_R)
norm{W)

l

HiBE=qmfile By — &« Hi D =wreviHi_R)

where gmf is such that Hi R and Lo R are quadrature mirror filters (i.e., Hi R(k) = (-1) ¥Lo R(2N + 1
-k)fork=1,2, .., 2N.

Note that wrev flips the filter coefficients. So Hi D and Lo D are also quadrature mirror filters. The
computation of these filters is performed using orthfilt. Next, we illustrate these properties with
the db6 wavelet.

Load the Daubechies’ extremal phase scaling filter and plot the coefficients.

load db6;
subplot(421); stem(db6, 'markerfacecolor',[0 0 1]1);
title('Original scaling filter');

Use orthfilt to return the analysis (decomposition) and synthesis (reconstruction) filters.

Obtain the discrete Fourier transforms (DFT) of the lowpass and highpass analysis filters. Plot the
modulus of the DFT.

LoDFT = fft(Lo D,64);
HiDFT = fft(Hi D,64);
freq = -pi+(2*pi)/64:(2*pi)/64:pi;

subplot(427); plot(freq,fftshift(abs(LoDFT)));
set(gca, 'xlim',[-pi,pil]l); xlabel('Radians/sample');
title('DFT Modulus - Lowpass Filter')

subplot(428); plot(freq,fftshift(abs(HiDFT)));

3-35

3 Discrete Wavelet Analysis

set(gca, 'xlim',[-pi,pi]l); xlabel('Radians/sample');
title('Highpass Filter');

Original scaling filter
0 Jm.-.lum—
0 5 10 15

Decomposition low-pass filter Decomposition high-pass filter
1 1

ISR K-

0 5 10 15 0 5 10 15
Reconstruction low-pass filter ~ Reconstruction high-pass filter
- = . 1 - =

0
X - . J 4 . .
0 5 10 19] 5 10 15
DFT Modulus - Lowpass Filter Highpass Filter
2 2
Fi - .'_ __L\x_ F,]
1 f!" Y 1 M, /
0 N\ 0 N /
-2 0 2 -2 0 2
Radians/sample Radiansfsample
Algorithms

Given a signal s of length N, the DWT consists of log,N stages at most. Starting from s, the first step
produces two sets of coefficients: approximation coefficients cA;, and detail coefficients cD;. These
vectors are obtained by convolving s with the low-pass filter Lo D for approximation, and with the
high-pass filter Hi D for detail, followed by dyadic decimation.

More precisely, the first step is

approximation
low-pass filter - datwnsample coefficients
- Lo D o | 2 cAj
g —= G
- HiD } 2 —— Dy
- detail
high-pass filter datwonsample coefficients
where X Convolve with filter X,
l 2 Keep the evenindexed elements

i(see dyaddaown),

3-36

Fast Wavelet Transform (FWT) Algorithm

The length of each filter is equal to 2L. The result of convolving a length N signal with a length 2L
filter is N+2L-1. Therefore, the signals F and G are of length N + 2L - 1. After downsampling by 2,
the coefficient vectors cA; and cD; are of length

N-1
2

.
The next step splits the approximation coefficients cA; in two parts using the same scheme, replacing

s by cA; and producing cA, and cD,, and so on.

One-Dimensional DWT

Decomposition Step

w To D Wt 22— = CAJ 1
GAj
| I - .] e
level j BD 4 2 i+l
level j+1

where X Convolve with filter X

} 2 | Downsample.

Initialization cdy=es

So the wavelet decomposition of the signal s analyzed at level j has the following structure: [cA;,
cD;, ..., cDq].

This structure contains for] = 3 the terminal nodes of the following tree.

Ay eD;
cAy cDq
cAg eDy

 Conversely, starting from cA; and cD;, the IDWT reconstructs cA; ,, inverting the decomposition
step by inserting zeros and convolving the results with the reconstruction filters.

3-37

3 Discrete Wavelet Analysis

One-Dimensional IDWT

Reconstruction Step

upsample lowr-pass
ol —- '1' g Lo R
— [wkeep —= ed;j,
level j-1
level j upsample high-pass
where T] Insert zeros at odd-indexed elements.
X Convolve with filter X.

wlkeep Take the central part of U with the
convenient length.

» For images, a similar algorithm is possible for two-dimensional wavelets and scaling functions
obtained from 1-D wavelets by tensorial product.

This kind of 2-D DWT leads to a decomposition of approximation coefficients at level j in four
components: the approximation at level j + 1 and the details in three orientations (horizontal,

vertical, and diagonal).

The following charts describe the basic decomposition and reconstruction steps for images.

3-38

Fast Wavelet Transform (FWT) Algorithm

Two-Dimensional DWT

Decomposition Step

col s
raws LoD ~142 « i
—| LoD o241
col s ih)
Hi D ~142 v eDin
herizontal
cA =
1 col umns)
FEWE Lo D =1 + 2 = C'Dj"'l
| w . - vertical
HiD 241 ceol umns (d
Ld ®mD wWilf2{i— +1
diagenal
wherte 2 41| Downsample columns: keep the evenindexed columns,

14 2| Downsample rows: keep the even indexed rows.

rows
X | Convolve with filter X the rows of the entry.

columns
X | Convolve with filter X the columns of the entry.

Initialization CAj = s for the decomposition initialization.

Two-Dimensional IDWT
Recon struction S5tep
el imns

CAj"'l _"| 1%2 i_'| Lo R i_ rews

l.]:l.l columns _"| 3'* 1 I_"| Lo R
Dy — o ma -
horizontal
columns wheep CAJ

\EI']-'.II:i'.II_h| 1 + ‘l_h| LD—R |_ Fan's

idi cel A |3{-1|—-—| H_R
J+1—-|1+ {—-| Hi R |—

diagenal

where 241 | Upsample columns: insert zeros at odd-indexed columns,

142 | Upsample rows: insert zevos at odd-indexed rows.

rows
X | Convolve with filter X the rows of the entry.

columns
X | Convolve with filter X the columns of the entry.

So, for J = 2, the 2-D wavelet tree has the following form.

3-39

3 Discrete Wavelet Analysis

oA 2

3-40

{d)
1

i)

GA] cD thi cD 1

1 el

(i) idl vl

el | ceD 0 el

Finally, let us mention that, for biorthogonal wavelets, the same algorithms hold but the
decomposition filters on one hand and the reconstruction filters on the other hand are obtained from
two distinct scaling functions associated with two multiresolution analyses in duality.

In this case, the filters for decomposition and reconstruction are, in general, of different odd lengths.
This situation occurs, for example, for “splines” biorthogonal wavelets used in the toolbox. By zero-
padding, the four filters can be extended in such a way that they will have the same even length.

Why Does Such an Algorithm Exist?

The previous paragraph describes algorithms designed for finite-length signals or images. To
understand the rationale, we must consider infinite-length signals. The methods for the extension of a
given finite-length signal are described in “Border Effects” on page 3-45.

Let us denote h = Lo R and g = Hi R and focus on the 1-D case.

We first justify how to go from level j to level j+1, for the approximation vector. This is the main step
of the decomposition algorithm for the computation of the approximations. The details are calculated
in the same way using the filter g instead of filter h.

Let (A ")keZ be the coordinates of the vector A;:

Aj= ;Akmqu, X

and A,U*Y the coordinates of the vector Aj,;:

Ajiq =;Ak(j+1)¢j+l,k

AU+ is calculated using the formula

A+ D = S hy — oxAn()
n

This formula resembles a convolution formula.
The computation is very simple.

Let us define

Fast Wavelet Transform (FWT) Algorithm

f(k) = h(= k), and F "V = S iy _ ,4n00).
n

The sequence Fi+1 is the filtered output of the sequence A% by the filter h.

We obtain

AU = F,, 0+1)

We have to take the even index values of F. This is downsampling.

The sequence AUV is the downsampled version of the sequence FU+D.

The initialization is carried out using A,® = s(k), where s(k) is the signal value at time k.

There are several reasons for this surprising result, all of which are linked to the multiresolution
situation and to a few of the properties of the functions @; and ;.

Let us now describe some of them.

1 The family (¢g k. k € Z) is formed of orthonormal functions. As a consequence for any j, the family
(¢j,k k € Z) is orthonormal.

2 The double indexed family
(vjnj€EZkEZ

is orthonormal.
3 For any j, the (¢; , k € Z) are orthogonal to (y; x, j' < j, k € Z).

4 Between two successive scales, we have a fundamental relation, called the twin-scale relation.

Twin-Scale Relation for ¢
d1,0= > ok bir1,0= > hdjk
k€z k'€z

This relation introduces the algorithm's h filter (h,, = 4/2wy). For more information, see “Filters
Used to Calculate the DWT and IDWT” on page 3-34.

5 We check that:

a The coordinate of ¢;,; on @;is hy and does not depend on j.
b The coordinate of ;1 , on @;x is equal to {¢;+1,n, ¢ k> = hi - 2n.
These relations supply the ingredients for the algorithm.

Up to now we used the filter h. The high-pass filter g is used in the twin scales relation linking
the y and ¢ functions. Between two successive scales, we have the following twin-scale
fundamental relation.

Twin-Scale Relation Between y and ¢

vi,0= > Gkdo,k Wit1,0= D Gkdjk
Kz kSz

3-41

3 Discrete Wavelet Analysis

8 After the decomposition step, we justify now the reconstruction algorithm by building it. Let us
simplify the notation. Starting from A, and D, let us study A, = A; + D;;. The procedure is the
same to calculate A = A;;; + Djy;.

Let us define «,, 6, oq? by

A= Eanfpl,n Dy = E6nll’l,n Ap = ;ng%,k
n n

Let us assess the a,? coordinates as

ap = {Ao, bo,xk> = <A1 + D1, do x> = <A1, ¢o, k> + <D1, bo, k>
> and1,n d0, k> + D,60W1, 0, b0, k>

= D aphg—on + Eéngk -2n
n

We will focus our study on the first sum En aphy — on; the second sum En 6nJgk — 2 is handled in a
similar manner.

The calculations are easily organized if we note that (taking k = 0 in the previous formulas, makes
things simpler)

D aph_op = ... + a_thy + aphg + ath_p + aph_y + ..
n
= ...+ a_1hy + 0hy + aghg + Oh_1 + ath—y + Oh_3 + aph_4 + ...
If we transform the (a,)sequence into a new sequence (&,)defined by
v 001, 0, ap, 0, 04, 0, @y, O, ... that is precisely
dop =ap, dopp+1=0
Then
D aph_oy = D dph_y,
n n
and by extension
D aphi —on = D dnhyk -
n n
Since

al? = Eanhk -nt Egngk -n
n n

the reconstruction steps are:
1 Replace the a and 6 sequences by upsampled versions o™ and 6 inserting zeros.

2 Filter by h and g respectively.

3-42

Fast Wavelet Transform (FWT) Algorithm

3 Sum the obtained sequences.

1-D Wavelet Capabilities

Basic 1-D Objects

Objects Description
Signal in original time s Original signal
A,O0<sk<j Approximation at level k
D,l=<sksj Detail at level k
Coefficients in scale-related CA, 1<sk<j Approximation coefficients at level k
time
cD, 1 <sk<j Detail coefficients at level k
[cA;, ¢D;, ..., ¢D4] Wavelet decomposition at level j, j = 1
Analysis-Decomposition Capabilities
Purpose Input Output File
Single-level decomposition S cA,, cD; dwt
Single-level decomposition CA,; CAj;1, €Dji4 dwt
Decomposition s [cA;, ¢D;, ..., ¢D1] wavedec
Synthesis-Reconstruction Capabilities
Purpose Input Output File
Single-level reconstruction cA,, cD; SOrA, idwt
Single-level reconstruction CAj;1, €Dy CA,; idwt
Full reconstruction [cA;, ¢D;, ..., ¢D4] Soré, waverec
Selective reconstruction [cAj, ¢D;, ..., ¢D4] A, D, wrcoef
Decomposition Structure Utilities
Purpose Input Output File
Extraction of detail coefficients [cA;, ¢D;, ..., ¢D] cDy, 1<sk<j detcoef
Extraction of approximation coefficients |[cA;, ¢D, ..., ¢D,] cAy, Osk<j appcoef
Recomposition of the decomposition [cAj, ¢D;, ..., ¢D4] [cAy, cDy, ...,cDi]1 =k <j |upwlev
structure

To illustrate command-line mode for 1-D capabilities, see “1-D Analysis Using the Command Line” on

page 3-10. .

3-43

3 Discrete Wavelet Analysis

2-D Wavelet Capabilities

Basic 2-D Objects

Objects Description
Image in original resolution s Original image
A, Approximation at level 0
A, l<sk<j Approximation at level k
D,l=<sk<j Details at level k
Coefficients in scale-related CA, 1<sk<j Approximation coefficients at level k
resolution cD, 1<sk<j Detail coefficients at level k
[cA;, ¢D;, ..., ¢D4] Wavelet decomposition at level j

D, stands for [Dy(h), Di(v), Dr(d)], the horizontal, vertical, and diagonal details at level k.
The same holds for c¢D;, which stands for [cD(h), cDg(V), cD(d)].

The 2-D files are the same as those for the 1-D case, but with a 2 appended on the end of the
command.

For example, idwt becomes idwt2. For more information, see “1-D Wavelet Capabilities” on page 3-
43.

To illustrate command-line mode for 2-D capabilities, see “Wavelet Image Analysis and Compression”
on page 3-151..

References
[1] Mallat, S. G. “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,”

IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 11, Issue 7, July 1989,
pp. 674-693.

3-44

Border Effects

Border Effects

Classically, the DWT is defined for sequences with length of some power of 2, and different ways of
extending samples of other sizes are needed. Methods for extending the signal include zero-padding,
smooth padding, periodic extension, and boundary value replication (symmetrization).

The basic algorithm for the DWT is not limited to dyadic length and is based on a simple scheme:
convolution and downsampling. As usual, when a convolution is performed on finite-length signals,
border distortions arise.

Signal Extensions: Zero-Padding, Symmetrization, and Smooth
Padding

To deal with border distortions, the border should be treated differently from the other parts of the
signal.

Various methods are available to deal with this problem, referred to as “wavelets on the interval” [1].
These interesting constructions are effective in theory but are not entirely satisfactory from a
practical viewpoint.

Often it is preferable to use simple schemes based on signal extension on the boundaries. This
involves the computation of a few extra coefficients at each stage of the decomposition process to get
a perfect reconstruction. It should be noted that extension is needed at each stage of the
decomposition process.

Details on the rationale of these schemes are in Chapter 8 of the book Wavelets and Filter Banks, by
Strang and Nguyen [2].

The available signal extension modes are as follows (see dwtmode):

* Zero-padding ('zpd"'): This method is used in the version of the DWT given in the previous
sections and assumes that the signal is zero outside the original support.

The disadvantage of zero-padding is that discontinuities are artificially created at the border.

* Symmetrization ('sym'): This method assumes that signals or images can be recovered outside
their original support by symmetric boundary value replication.
It is the default mode of the wavelet transform in the toolbox.

Symmetrization has the disadvantage of artificially creating discontinuities of the first derivative
at the border, but this method works well in general for images.

* Smooth padding of order 1 ('spd'or 'spl'): This method assumes that signals or images can
be recovered outside their original support by a simple first-order derivative extrapolation:
padding using a linear extension fit to the first two and last two values.

Smooth padding works well in general for smooth signals.

* Smooth padding of order 0 ('sp0'): This method assumes that signals or images can be
recovered outside their original support by a simple constant extrapolation. For a signal extension
this is the repetition of the first value on the left and last value on the right.

* Periodic-padding (1) ('ppd'): This method assumes that signals or images can be recovered
outside their original support by periodic extension.

3-45

3 Discrete Wavelet Analysis

3-46

The disadvantage of periodic padding is that discontinuities are artificially created at the border.

The DWT associated with these five modes is slightly redundant. But IDWT ensures a perfect
reconstruction for any of the five previous modes whatever the extension mode used for DWT.

* Periodic-padding (2) ('per'): If the signal length is odd, the signal is first extended by adding
an extra-sample equal to the last value on the right. Then a minimal periodic extension is
performed on each side. The same kind of rule exists for images. This extension mode is used for
SWT (1-D & 2-D).

This last mode produces the smallest length wavelet decomposition. But the extension mode used for
IDWT must be the same to ensure a perfect reconstruction.

Before looking at an illustrative example, let us compare some properties of the theoretical Discrete
Wavelet Transform versus the actual DWT.

The theoretical DWT is applied to signals that are defined on an infinite length time interval (Z). For
an orthogonal wavelet, this transform has the following desirable properties:

1 Norm preservation

Let cA and cD be the approximation and detail of the DWT coefficients of an infinite length signal
X. Then the I2>-norm is preserved:
IXI1? = llcAJ* + |lcD|I?

2 Orthogonality
Let A and D be the reconstructed approximation and detail. Then, A and D are orthogonal and
IX1% = [1A]* + [D]?

3 Perfect reconstruction
X=A+D

Since the DWT is applied to signals that are defined on a finite-length time interval, extension is
needed for the decomposition, and truncation is necessary for reconstruction.

To ensure the crucial property 3 (perfect reconstruction) for arbitrary choices of

* The signal length
* The wavelet
* The extension mode

the properties 1 and 2 can be lost. These properties hold true for an extended signal of length usually
larger than the length of the original signal. So only the perfect reconstruction property is always
preserved. Nevertheless, if the DWT is performed using the periodic extension mode (‘per') and if the
length of the signal is divisible by 2/, where J is the maximum level decomposition, the properties 1,
2, and 3 remain true.

Practical Considerations
The DWT iterative step consists of filtering followed by downsampling:

* Apply lowpass filter then downsample by two to obtain approximation coefficients.
* Apply highpass filter then downsample by two to obtain detail coefficients.

Border Effects

So conceptually, the number of approximation coefficients is one half the number of samples, and
similarly for the detail coefficients.

In the real world, we deal with signals of finite length. With the desire of applying the theoretical
DWT algorithm to the practical, the question of boundary conditions must be addressed: how should
the signal be extended?

Before investigating the different scenarios, save the current boundary extension mode.

origmodestatus = dwtmode('status', 'nodisplay');
Periodic, Power of 2

Consider the following example. Load the noisdopp data. The signal has 1024 samples, which is a
power of 2. Use dwtmode to set the extension mode to periodic. Then use wavedec to obtain the
level-3 DWT of the signal using the orthogonal db4 wavelet.

load noisdopp;

X = noisdopp;

lev = 3;

wav = 'db4';
dwtmode('per', 'nodisp')
[c,bk] = wavedec(x,lev,wav);
bk

bk =

128 128 256 512 1024

The bookkeeping vector bk contains the number of coefficients by level. At each stage, the number of

a4 a3 _ qr
detail coefficients reduces exactly by a factor of 2. At the end, there are 1024/2% = 128 approximation
coefficients.

Compare the !/*-norms.
fprintf('12-norm difference: %.5g\n',sum(x.”2)-sum(c.”2))
12-norm difference: 9.0658e-09

Obtain the reconstructed approximations and details by setting to 0 the appropriate segments of the
coefficients vector ¢ and taking the inverse DWT.

CX = C;
cx(bk(1l)+1l:end) = 0;

reconApp = waverec(cx,bk,wav);
CX = C;

cx(1l:bk(1)) = 0;

reconDet = waverec(cx,bk,wav);

Check for orthogonality.

fprintf('Orthogonality difference %.4g\n',...
sum(x.”2)-(sum(reconApp.~2)+sum(reconbDet.”2)))

Orthogonality difference 1.816e-08

3-47

3 Discrete Wavelet Analysis

Check for perfect reconstruction.

fprintf('Perfect reconstruction difference: %.5g\n',
max (abs (x- (reconApp+reconDet))));

Perfect reconstruction difference: 1.674e-11
The three theoretical DWT properties are preserved.
Periodic, Not Power of 2

Now obtain the three-level DWT of a signal with 1026 samples. Use the same wavelet and extension
mode is above. The number of coefficients at stage n does not evenly divide the signal length.

= [0 O noisdoppl;
[c,bk] = wavedec(x,lev,wav);
bk

bk =

129 129 257 513 1026

Check for I*-norm preservation, orthogonality, and perfect reconstruction.

CX = C;
cx(bk(1l)+1l:end) = 0;

reconApp = waverec(cx,bk,wav);
CX = C;

cx(1l:bk(1)) = 0;

reconDet = waverec(cx,bk,wav);

fprintf('l2-norm difference: %.5g\n',sum(x.”2)-sum(c.”2))
fprintf (' Orthogonallty dlfference %.4g\n",

sum(x.”2) - (sum(reconApp.”2)+sum(reconDet.”2)))
fprintf (' Perfect reconstruction difference: %.5g\n',

max (abs(x- (reconApp+reconDet))));

12-norm difference: -1.4028
Orthogonality difference -0.3319
Perfect reconstruction difference: 1.6858e-11

Perfect reconstruction is satisfied, but the /*-norm and orthogonality are not preserved.
Not Periodic, Power of 2

Obtain the three-level DWT of a signal with 1024. Use the same wavelet as above, but this time
change the extension mode to smooth extension of order 1. The number of coefficients at stage n
does not evenly divide the signal length.

dwtmode('spl', 'nodisp')
[c,bk] = wavedec(x,lev,wav);
bk

bk =

3-48

Border Effects

134 134 261 516 1026

Check for /*-norm preservation, orthogonality, and perfect reconstruction.

CX = C;
cx(bk(1l)+1l:end) = 0;

reconApp = waverec(cx,bk,wav);
CX = C;

cx(1l:bk(1)) = 0;

reconDet = waverec(cx,bk,wav);

fprintf('12-norm difference: %.5g\n',sum(x.”2)-sum(c.”2))
fprintf (' Orthogonallty dlfference %.49\n",

sum(x.”2) - (sum(reconApp.”2)+sum(reconDet.”2)))
fprintf (' Perfect reconstruction difference: %.5g\n"',

max (abs (x- (reconApp+reconDet))));

12-norm difference: -113.58
Orthogonality difference -2.678
Perfect reconstruction difference: 1.6372e-11

Again, only perfect reconstruction is satisfied.
Restore the original extension mode.
dwtmode(origmodestatus, 'nodisplay');

To support perfect reconstruction for arbitrary choices of signal length, wavelet, and extension mode,
we use frames of wavelets.

A frame is a set of functions { @+ } that satisfy the following condition: there exist constants
0 < A = B such that for any function f, the frame inequality holds: <1 1FI? < Sel(f, o) * < Bl I

The functions in a frame are generally not linearly independent. This means that the function ./ does
not have a unique expansion in #. Daubechies [3] shows that if {@t} is the dual frame and
f = Siexcudr for some ¢ = () € P(K) and if not all e equal {f- @), then

- - .2
Sreklerl® = Brex|(f, or)])

If A= B, the frame is called a tight frame. If A = B = 1 and x> =1 for all #k, the frame is an

orthonormal basis. If 4 # B, then energy is not necessarily preserved, and the total number of
coefficients might exceed the length of the signal. If the extension mode is periodic, the wavelet is

orthogonal, and the signal length is divisible by 2/, where .J is the maximum level of the wavelet
decomposition, all three theoretical DWT properties are satisfied.

Arbitrary Extensions

It is interesting to notice that if an arbitrary extension is used, and decomposition is performed using
the convolution-downsampling scheme, perfect reconstruction is recovered using idwt or idwt2.

Create a signal and obtain the filters associated with the db9 wavelet.

3-49

3 Discrete Wavelet Analysis

X = sin(0.3*[1:451]);
w = 'db9';
[LoD,HiD,LoR,HiR] = wfilters(w);

Append and prepend length(LoD) random numbers to the signal. Plot the original and extended

signals.

1x = length(x);

1f = length(LoD);

ex = [randn(1l,1f) x randn(1,1f)1;

ymin = min(ex);

ymax = max(ex);
subplot(2,1,1)
plot(lf+1:1f+1x,x)

axis([1 Ix+2*1f ymin ymax]);
title('Original Signal')
subplot(2,1,2)

plot(ex)

title('Extended Signal')
axis([1 Ux+2*1f ymin ymax])

Original Signal

LA
. emee fﬂ

2 N

|

50 100 150 200 250 300 350 400 450

Use the lowpass and highpass wavelet decomposition filters to obtain the one-level wavelet
decomposition of the extended signal.

la = floor((lx+1f-1)/2);
ar = wkeep(dyaddown(conv(ex,LoD)),1la);
dr = wkeep(dyaddown(conv(ex,HiD)),1la);

3-50

Border Effects

Level number
- w s o

Confirm perfect reconstruction of the signal.

xr = idwt(ar,dr,w,1x);
err® = max(abs(x-xr))

err@ = 5.4700e-11

Comparing Extension Differences

Now let us illustrate the differences between the first three methods both for 1-D and 2-D signals.
Zero-Padding

Using the Wavelet Analysis app we will examine the effects of zero-padding.

1 From the MATLAB prompt, type

dwtmode('zpd')
2 From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.
Click the Wavelet 1-D menu item. The discrete wavelet analysis tool for 1-D signal data appears.

4 From the File menu, choose the Example Analysis option and select Basic Signals > with db2
at level 5 > Two nearby discontinuities.

5 Select Display Mode: Show and Scroll.

The detail coefficients clearly show the signal end effects.

Details Coefficients

100 200 300 400 500 600 700 800 an0 1000

Scak of calors from MIM to MAX

Symmetric Extension
6 From the MATLAB prompt, type

dwtmode('sym')
7 Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for 1-D signal data appears.

8 From the File menu, choose the Example Analysis option and select Basic Signals > with db2
at level 5 > Two nearby discontinuities.

9 Select Display Mode: Show and Scroll.

The detail coefficients clearly show the signal end effects.

3-51

3 Discrete Wavelet Analysis

Detals Costiicients

Level number
- m oW = o

400 500 B0

Scale of colors from Wi o MAX

Smooth Padding
10 From the MATLAB prompt, type

dwtmode('spd')
11 Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for 1-D signal data appears.

12 From the File menu, choose the Example Analysis option and select Basic Signals > with db2
at level 5 > Two nearby discontinuities.

13 Select Display Mode: Show and Scroll.

The detail coefficients show the signal end effects are not present, and the discontinuities are
well detected.

Detalls Coefficlents

Level number
= m w & o»

100 200 300 400 500 600 oo 800 00 1000

Scale of colors from MIN to MLX

Image Extensions

Let us now consider an image example. Save the current extension mode. Load and display the
geometry image.

origmodestatus = dwtmode('status', 'nodisplay');
load geometry

nbcol = size(map,1l);

colormap(pink(nbcol))

image(wcodemat (X, nbcol))

3-52

Border Effects

Zero-Padding

Set the extension mode to zero-padding and perform a decomposition of the image to level 3 using

the sym4 wavelet. Then reconstruct the approximation of level 3.

lev = 3;
wname

’

'sym4';

'nodisp')

’

dwtmode('zpd'

lev,wname) ;

X

(

C

[c,s] = wavedec?2

a = wrcoef2(

,C,S,wname, lev);
nbcol))

|a|

image(wcodemat(a

3-53

3 Discrete Wavelet Analysis

100

120

Symmetric Extension

Set the extension mode to symmetric extension and perform a decomposition of the image to level 3
using the sym4 wavelet. Then reconstruct the approximation of level 3.

dwtmode('sym', 'nodisp')

[c,s] = wavedec2(X, lev,wname);
a = wrcoef2('a',c,s,wname,lev);
image(wcodemat(a,nbcol))

3-54

Border Effects

100

Smooth Padding

Set the extension mode to smooth padding and perform a decomposition of the image to level 3 using
the sym4 wavelet. Then reconstruct the approximation of level 3.

dwtmode('spd', 'nodisp')

[c,s] = wavedec2(X, lev,wname);
a = wrcoef2('a',c,s,wname,lev);
image(wcodemat(a,nbcol))

3-55

3 Discrete Wavelet Analysis

100

120

Restore the original extension mode.

dwtmode(origmodestatus, 'nodisplay')

References

[1] Cohen, A., I. Daubechies, B. Jawerth, and P. Vial. "Multiresolution analysis, wavelets and fast
algorithms on an interval." Comptes Rendus Acad. Sci. Paris Sér. A, Vol. 316, pp. 417-421,
1993.

[2] Strang, G., and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA: Wellesley-Cambridge Press,
1996.

[3] Daubechies, I. Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied
Mathematics. Philadelphia, PA: SIAM Ed, 1992.

See Also
wavedec | dwtfilterbank

3-56

Nondecimated Discrete Stationary Wavelet Transforms (SWTs)

Nondecimated Discrete Stationary Wavelet Transforms (SWTs)

We know that the classical DWT suffers a drawback: the DWT is not a time-invariant transform. This
means that, even with periodic signal extension, the DWT of a translated version of a signal X is not,
in general, the translated version of the DWT of X.

How to restore the translation invariance, which is a desirable property lost by the classical DWT?
The idea is to average some slightly different DWT, called e-decimated DWT, to define the stationary
wavelet transform (SWT). This property is useful for several applications such as breakdown points
detection.

The main application of the SWT is denoising. For more information on the rationale, see [CoiD95] in
“References”. For examples, see “1-D Stationary Wavelet Transform” on page 3-62 and “2-D
Stationary Wavelet Transform” on page 3-170.

The principle is to average several denoised signals. Each of them is obtained using the usual
denoising scheme (see “Wavelet Denoising and Nonparametric Function Estimation” on page 6-2),
but applied to the coefficients of an e-decimated DWT.

Note The SWT is defined only for signals of length divisible by 2/, where J is the maximum
decomposition level. The SWT uses periodic (per) extension.

e-Decimated DWT

What is an e-decimated DWT?

There exist a lot of slightly different ways to handle the discrete wavelet transform. Let us recall that
the DWT basic computational step is a convolution followed by a decimation. The decimation retains
even indexed elements.

But the decimation could be carried out by choosing odd indexed elements instead of even indexed
elements. This choice concerns every step of the decomposition process, so at every level we chose

odd or even.

If we perform all the different possible decompositions of the original signal, we have 2/ different
decompositions, for a given maximum level J.

Let us denote by ¢; = 1 or 0 the choice of odd or even indexed elements at step j. Every decomposition
is labeled by a sequence of Os and 1s: € = ¢;...,&;. This transform is called the e-decimated DWT.

You can obtain the basis vectors of the e-decimated DWT from those of the standard DWT by applying
a shift and corresponds to a special choice of the origin of the basis functions.

How to Calculate the e-Decimated DWT: SWT

It is possible to calculate all the e-decimated DWT for a given signal of length N, by computing the
approximation and detail coefficients for every possible sequence €. Do this using iteratively, a
slightly modified version of the basic step of the DWT of the form:

[A,D] = dwt(X,wname, 'mode’', 'per','shift',e);

3-57

3 Discrete Wavelet Analysis

The last two arguments specify the way to perform the decimation step. This is the classical one for e
=0, but for e =1 the odd indexed elements are retained by the decimation.

Of course, this is not a good way to calculate all the e-decimated DWT, because many computations
are performed many times. We shall now describe another way, which is the stationary wavelet
transform (SWT).

The SWT algorithm is very simple and is close to the DWT one. More precisely, for level 1, all the e-
decimated DWT (only two at this level) for a given signal can be obtained by convolving the signal
with the appropriate filters as in the DWT case but without downsampling. Then the approximation
and detail coefficients at level 1 are both of size N, which is the signal length. This can be visualized
in the following figure.

low-pass approximation coefs

Lo D oy

o

Hi D el;

whera:

high-pass detail cocfs

X Convaolve with filter X

The general step j convolves the approximation coefficients at level j-1, with upsampled versions of
the appropriate original filters, to produce the approximation and detail coefficients at level j. This
can be visualized in the following figure.

One-Dimensional SWT

Decomposition step

A ——

level §

= F_, CA;|'+.E

el J+

lewel j41

where X Convolve with filter X

Filter computation

F:l.

G;l.

— 12

}2

where * 7 | Upsample

Initialization
cldp==s Fg=Lo D Gp=Hi_D

3-58

Next, we illustrate how to extract a given e-decimated DWT from the approximation and detail
coefficients structure of the SWT.

We decompose a sequence of height numbers with the SWT, at level J = 3, using an orthogonal
wavelet.

Nondecimated Discrete Stationary Wavelet Transforms (SWTs)

The function swt calculates successively the following arrays, where A(j,&y,...,;) or D(j,&y,...,€)

denotes an approximation or a detail coefficient at level j obtained for the e-decimated DWT

characterized by e=[gq,...,&f].

Step O (Original Data)

|A(O) |A(0) |A(O) |A(0) |A(O) |A(0) |A(O) |A(0)
Step 1

D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1)

A(1,0) A(1,1) A(1,0) A(1,1) A(1,0) A(1,1) A(1,0) A(1,1)
Step 2

D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1)

D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1) D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1)

A(2,0,0) A(2,1,0) A2,0,1) AQ,1,1) A(2,0,0) A(2,1,0) A2,0,1) AQ,1,1)
Step 3

D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1)

D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1) D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1)

D(3,0,0,00 |D(3,1,0,00 |DGB,0,1,00 [DGB,1,1,00 [DGE0,01) |DEGE,1,01) |[D3E,0,1,1) |DG3,1,1,1)

A(3,0,0,00 |A(3,1,0,00 |A3,0,1,00 |A3,1,1,00 |A(3,0,01) |A@3,1,0,1) |AG3,0,1,1) [AG1,1,1)

Let j denote the current level, where j is also the current step of the algorithm. Then we have the
following abstract relations with g = 0 or 1:

[tmpAPP, tmpDET] =
dwt(A(j,g,, ,€;),wname, 'mode’, 'per', 'shift', g,1);

A(j+1I€1I lElej+1)
D(j+1,€1, lElej+1)

where circshift performs a e-circular shift of the input vector. Therefore, if g;,; = 0, the
circshift instruction is ineffective and can be suppressed.

circshift(tmpAPP, -g4,41);
circshift (tmpDET, -€4,1);

Let € = [gy,...,g] with & = 0 or 1. We have 2/ = 23 = eight different e-decimated DWTs at level 3.
Choosing €, we can retrieve the corresponding e-decimated DWT from the SWT array.

Now, consider the last step, J = 3, and let [Ce,Le] denote the wavelet decomposition structure of an -
decimated DWT for a given €. Then, it can be retrieved from the SWT decomposition structure by
selecting the appropriate coefficients as follows:

Ce =

|A(3, €1, £, £3)

|D(3, €1, £, €3)

|D(2, €1, 82)

|D(2, €1, 82)

ID(,e) [D(L,e) [D(Le) [DA,e) |

Le =1[1,1,2,4,8]

For example, the e-decimated DWT corresponding to € = [€4, €, €3] = [1,0,1] is shown in bold in the
sequence of arrays of the previous example.

3-59

3 Discrete Wavelet Analysis

This can be extended to the 2-D case. The algorithm for the stationary wavelet transform for images
is visualized in the following figure.

Two-Dimensional SWT

Decomposition Step

columns
-5] A
columns "
Dy
d horizontal
cAd —w
d columns |
vl
vertical
columns]
D
diggonal
where
FOLE
Convolve with filter X the rows of the entry
collimns

Convolve with filter X the columns of the entry

Filter Computation
F } 2 Fiui
where 1- o | Upsample
G; 1' 2 Fiy g
Initialization

cAg =& for the decomposition initialization
Fp=Lo D
Go=Hi D

. . il . |l . dl
Note SLB‘E{CAJ'J = swe{cD;-!J = s:ze{cD;-l)= s:.ze{cD;-) ==

Where s = size of the analyzed image

Inverse Discrete Stationary Wavelet Transform (ISWT)
Each e-decimated DWT corresponding to a given € can be inverted.

To reconstruct the original signal using a given e-decimated DWT characterized by [g;,...,;], we can
use the abstract algorithm

FOR j = J:-1:1

A(j-ll €1 I‘c-j-l) = e

idwt(A(j,&;, ,&),D(S,g1, ,€5)],wname, 'mode’, 'per', 'shift’,g;);
END

For each choice of € = (gy,...,&)), we obtain the original signal A(0), starting from slightly different
decompositions, and capturing in different ways the main features of the analyzed signal.

3-60

Nondecimated Discrete Stationary Wavelet Transforms (SWTs)

The idea of the inverse discrete stationary wavelet transform is to average the inverses obtained for
every e-decimated DWT. This can be done recursively, starting from level J down to level 1.

The ISWT is obtained with the following abstract algorithm:

FOR j = J:-1:1
X0 = idwt(A(j,&;, ,&),D(j,&1, ,&)]1,wname,
'mode', 'per', 'shift',0);
X1 = idwt(A(j,&1, ,&),D(j,&1, ,&)],wname,
'mode', 'per', 'shift',1)
X1 = circshift(X1,-1);
A(j-1, &, ,&5.1) = (X0+X1)/2;
END

Along the same lines, this can be extended to the 2-D case.

More About SWT

Some useful references for the Stationary Wavelet Transform (SWT) are [CoiD95], [NasS95], and
[PesKC96] in “References”.

3-61

3 Discrete Wavelet Analysis

1-D Stationary Wavelet Transform

3-62

This topic takes you through the features of 1-D discrete stationary wavelet analysis using the
Wavelet Toolbox software. For more information see “Nondecimated Discrete Stationary Wavelet
Transforms (SWTs)” on page 3-57 in the Wavelet Toolbox User's Guide.

The toolbox provides these functions for 1-D discrete stationary wavelet analysis. For more
information on the functions, see the reference pages.

Analysis-Decomposition Functions

Function Name Purpose

swt Decomposition

Synthesis-Reconstruction Functions

Function Name Purpose

iswt Reconstruction

The stationary wavelet decomposition structure is more tractable than the wavelet one. So the
utilities, useful for the wavelet case, are not necessary for the stationary wavelet transform (SWT).

In this section, you'll learn to

* Load a signal

* Perform a stationary wavelet decomposition of a signal

* Construct approximations and details from the coefficients

» Display the approximation and detail at level 1

* Regenerate a signal by using inverse stationary wavelet transform
* Perform a multilevel stationary wavelet decomposition of a signal
* Reconstruct the level 3 approximation

* Reconstruct the level 1, 2, and 3 details

* Reconstruct the level 1 and 2 approximations

» Display the results of a decomposition

* Reconstruct the original signal from the level 3 decomposition

* Remove noise from a signal

Since you can perform analyses either from the command line or using the Wavelet Analyzer app, this
section has subsections covering each method.

The final subsection discusses how to exchange signal and coefficient information between the disk
and the graphical tools.

1-D Analysis Using the Command Line

This example involves a noisy Doppler test signal.

1-D Stationary Wavelet Transform

Load a signal.

From the MATLAB prompt, type

load noisdopp
Set the variables. Type

s = noisdopp;

For the SWT, if a decomposition at level k is needed, 2”k must divide evenly into the length of
the signal. If your original signal does not have the correct length, you can use the wextend
function to extend it.

Perform a single-level Stationary Wavelet Decomposition.

Perform a single-level decomposition of the signal using the db1 wavelet. Type
[swa,swd] = swt(s,1,'dbl');

This generates the coefficients of the level 1 approximation (swa) and detail (swd). Both are of
the same length as the signal. Type

whos
Name Size Bytes Class
noisdopp 1x1024 8192 double array
S 1x1024 8192 double array
swa 1x1024 8192 double array
swd 1x1024 8192 double array

Display the coefficients of approximation and detail.

To display the coefficients of approximation and detail at level 1, type

subplot(1,2,1), plot(swa); title('Approximation cfs')
subplot(1,2,2), plot(swd); title('Detail cfs')

Approximation cfs Detail cfs

200 400 600 800 1000 ~ 200 400 600 8001000

3-63

3 Discrete Wavelet Analysis

5 Regenerate the signal by Inverse Stationary Wavelet Transform.
To find the inverse transform, type
AO = iswt(swa,swd, 'dbl');
To check the perfect reconstruction, type

err = norm(s-AQ)
err =
2.1450e-14

6 Construct and display approximation and detail from the coefficients.

To construct the level 1 approximation and detail (A1 and D1) from the coefficients swa and swd,
type

nulcfs = zeros(size(swa));
Al iswt(swa,nulcfs, 'dbl');
D1 iswt(nulcfs,swd, 'dbl');

To display the approximation and detail at level 1, type

subplot(1,2,1), plot(Al); title('Approximation Al');
subplot(1,2,2), plot(Dl); title('Detail D1');

Approximation A1 Detail D1
= = F 1 - 21 T T T T T

=
T
i
—

(%]
o
w

0 0
|
-2 05
4t . I
6 1.5]
L i -2 E L L H

200 400 600 800 1000 200 400 600 800 1000
7 Perform a multilevel Stationary Wavelet Decomposition.

To perform a decomposition at level 3 of the signal (again using the db1 wavelet), type

[swa,swd] = swt(s,3,'dbl');

3-64

1-D Stationary Wavelet Transform

This generates the coefficients of the approximations at levels 1, 2, and 3 (swa) and the
coefficients of the details (swd). Observe that the rows of swa and swd are the same length as the
signal length. Type

clear A0 Al D1 err nulcfs

whos
Name Size Bytes Class
noisdopp 1x1024 8192 double array
s 1x1024 8192 double array
swa 3x1024 24576 double array
swd 3x1024 24576 double array

8 Display the coefficients of approximations and details.

To display the coefficients of approximations and details, type

kp = 0;

for i = 1:3
subplot(3,2,kp+1l), plot(swa(i,:));
title(['Approx. cfs level ',num2str(i)])
subplot(3,2,kp+2), plot(swd(i,:));
title(['Detail cfs level ',num2str(i)])
kp = kp + 2;

end

ﬁ_.ppro?{_ c-fs_ Ievel_1 Detail cfs level 1

10]
0
=10}) !)) I
200 400 600 8001000 200 400 s00 8001000
Approx. cfs level 2 Detail cfs level 2

o o
E 3
____‘j-
i
}
Bro M e

200 400 600 800 1000 200 400 600 800 1000

Approx. cfs level 3 Detail cfs level 3
20 A
|1|F| []I ek 5}
IHEANARN
ol [|/ 0
i\ /
Wy o\ S
ol ¥ N ST
200 400 600 8001000 200 400 600 8001000

9 Reconstruct approximation at Level 3 From coefficients.

3-65

3 Discrete Wavelet Analysis

To reconstruct the approximation at level 3, type

mzero = zeros(size(swd));
A = mzero;
A(3,:) = iswt(swa,mzero, 'dbl');

10 Reconstruct details from coefficients.

To reconstruct the details at levels 1, 2 and 3, type

D = mzero;
for i = 1:3

swcfs = mzero;

swcfs(i,:) = swd(i,:);

D(i,:) = iswt(mzero,swcfs, 'dbl');
end

11 Reconstruct and display approximations at Levels 1 and 2 from approximation at Level 3 and
details at Levels 2 and 3.

To reconstruct the approximations at levels 2 and 3, type

A(3,:) + D(3,:);
A(2,:) + D(2,:);

To display the approximations and details at levels 1, 2 and 3, type

kp = 0;

for i = 1:3
subplot(3,2,kp+1l), plot(A(i,:));
title(['Approx. level ',num2str(i)])
subplot(3,2,kp+2), plot(D(i,:));
title(['Detail level ',num2str(i)])
kp = kp + 2;

end

3-66

1-D Stationary Wavelet Transform

Detail level 1

Approx. level 1

200 400 600 8001000 200 400 600 8001000
Approx. level 2 Detail level 2

= o
e —"

SR
200 400 600 8001000 200 400 600 8001000
Appmx level 3 Detail level 3
5 Yy
TIARANES (p—————
0 \ || | l | |I 0 i
|I i A
-5 \/ -1 '
L " - - - - - al
200 400 600 800 1000 200 400 800 8001000

12 Remove noise by thresholding.

To denoise the signal, use the ddencmp command to calculate a default global threshold. Use the
wthresh command to perform the actual thresholding of the detail coefficients, and then use the

iswt command to obtain the denoised signal.

Note All methods for choosing thresholds in the 1-D Discrete Wavelet Transform case are also
valid for the 1-D Stationary Wavelet Transform, which are also those used by the Wavelet

Analysis app. This is also true for the 2-D transforms.

[thr,sorh] = ddencmp('den','wv',s);
dswd = wthresh(swd,sorh,thr);
clean = iswt(swa,dswd, 'dbl');

To display both the original and denoised signals, type

subplot(2,1,1), plot(s);
title('Original signal')
subplot(2,1,2), plot(clean);
title('denoised signal')

3-67

3 Discrete Wavelet Analysis

Original signal

5t
0
-5
200 400 600 800 1000
denoised signal
S A I"| II II' I; \ hﬁﬂﬂ'
| | |

| | ||J' \ I."I | | j,

600 800 1000

200 400
The obtained signal remains a little bit noisy. The result can be improved by considering the

decomposition of s at level 5 instead of level 3, and repeating steps 14 and 15. To improve the
previous denoising, type

[swa,swd] = swt(s,5,'dbl"');

[thr,sorh] = ddencmp('den’','wv',s);

dswd = wthresh(swd,sorh,thr);

clean = iswt(swa,dswd, 'dbl');

subplot(2,1,1), plot(s); title('Original signal')
subplot(2,1,2), plot(clean); title('denoised signal')

3-68

1-D Stationary Wavelet Transform

Original signal

5t
Il
i
-5 1
200 400 600 800 1000
denoised signal
T Uran T T
5t A\ \ /TN 1
|"| | | "
| |I | | / L
| | | | I| \ ™
0 :-ﬂh‘f | UH | | |I |I \ ;_.-' ~—
'I I || |I /
J |I \ I-'.
5t | ".. J.-". 4
4 4 .._l"" i b -
200 400 600 800 1000

A second syntax can be used for the swt and iswt functions, giving the same results:

lev = 5; swc = swt(s,lev,'dbl');

swcden = swc;

swcden(1l:end-1,:) = wthresh(swcden(l:end-1,:),sorh,thr);
clean = iswt(swcden, 'dbl');

You can obtain the same plot by using the same plot commands as in step 16 above.

Interactive 1-D Stationary Wavelet Transform Denoising

Now we explore a strategy to denoise signals, based on the 1-D stationary wavelet analysis using the
Wavelet Analyzer app. The basic idea is to average many slightly different discrete wavelet analyses.

1

Start the Stationary Wavelet Transform Denoising 1-D Tool.
From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.

3-69

3 Discrete Wavelet Analysis

4 Wavelet Analyzer - m] X

File Window Help k]

One-Dimensional Specialized Tools 1-D

SWT Denoising 1-D
Wavelet 1-D
Density Estimation 1-D
Wavelet Packet 1-D
Regression Estimation 1-D
Continuous Wavelet 1-D
Wavelet Coeflicients Selection 1-D

Complex Continuous Wavelet 1-D)
Matching Pursuit 1-D

Two-Dimensional

Wavelet 2-D

Specialized Tools 2-D
Wavelet Packet 2-D
True Compression 2-D
Continuous Wavelet Transform 2-D
SWT Denoising 2-D

Three-Dimensional Wavelet Coefficients Selection 2-D
Wavelet 3-D Image Fusion
Multiple 1-D

Multisignal Analysis 1-D

Multivariate Denoising

Multizcale Princ. Comp. Analysis

Close

3-70

Click the SWT Denoising 1-D menu item. The discrete stationary wavelet transform denoising
tool for 1-D signals appears.

2 Load data.

At the MATLAB command prompt, type
load noisbloc;

In the SWT Denoising 1-D tool, select File > Import Signal from Workspace. When the
Import from Workspace dialog box appears, select the noisbloc variable. Click OK to import
the noisy blocks signal.

3 Perform a Stationary Wavelet Decomposition.

Select the db1 wavelet from the Wavelet menu and select 5 from the Level menu, and then click
the Decompose Signal button. After a pause for computation, the tool displays the stationary
wavelet approximation and detail coefficients of the decomposition. These are also called
nondecimated coefficients since they are obtained using the same scheme as for the DWT, but
omitting the decimation step (see “Fast Wavelet Transform (FWT) Algorithm” on page 3-34 in the
Wavelet Toolbox User's Guide).

1-D Stationary Wavelet Transform

)

v Winvelet Transform Denoising 1-0 [=]-&=
File Edit View Inzert Tools ‘Window Help -
Sl (5] Bt Sl () Datn noitkioe (1024)
o « haer
L] =
10 Im 10 Level s -
ﬂ o —====

200 400 B0 B0

refilss ms.p. 200 40 GO0 EDD 1000
x10 L
1

o

-1

200 400
Non-decimatad Approximalion Cosficienis

aq br~v—,]

d ﬁ pofpeymedhpasaapedfesend

B0 EOO 1000
Mon-decimabad Appraximalion Coedficients

= kE o & R

“Sedact thresholding method

Fiecd Tioeth threshold

w
L -

Sedect roise structure

Uriscaled whibs noize =

Lew It

o |t T [3 THS
= T il R T
= Y o Y E LT

Select Thwesh

= Y ol it R
- = Y ol ol T
| e et | LT e
LY [
]dZ Cevariary Die-niizad Si
fd,

200 400 E00 EO0 1000 200 400 EO0 B0 1000
[[[0] | rapper CHICH W= :
Cx)00 | _on ito | v=_ ||| Hetory i

l

4

denoise the signal using the Stationary Wavelet Transform.

While a number of options are available for fine-tuning the denoising algorithm, we'll accept the
defaults of fixed form soft thresholding and unscaled white noise. The sliders located on the right
part of the window control the level-dependent thresholds, indicated by yellow dotted lines
running horizontally through the graphs of the detail coefficients to the left of the window. The
yellow dotted lines can also be dragged directly using the left mouse button over the graphs.

Note that the approximation coefficients are not thresholded.

Click the denoise button.

3-71

3 Discrete Wavelet Analysis

n Stationary Winselet Transforrm Denoasing 1-D
File Edit

20

View Inzert Tools ‘Window Help
S (S) e
10 """"r x |'_1ﬂ_,
| e Tl

00 400 B0 BOQ ARGO. _o.p 200 400 EDO B0O 1000
5

Soinhriicean

200 400
Non-decimatad Approximalion Cosficienis

B0 EOO 1000
Mon-decimabad Appraximalion Coedficients

33—]

)5

Non-decimated Details Costficients

De-noised non-decimaled Detals Coedficients

d ﬁ pofpeymedhpasaapedfesend

At —— {4

d, :E I""I""lf“""“"f"f"'"‘i

e,

noiskios (1024)

el e =
e g -

Datn

Demm:msumd]

“Sedact thresholding method

Fieced foeth thrashold =
..

Select noise struchure
Uriscaled whibs noise =
Lew Il Select Thiesh
B N]
i =l ans
| L JATHE
PP B ol eilY R IT
PR Yl S ER{T

d, .:E = ﬁ#ﬁ&annﬁaﬂﬁa‘.ﬂ

| dy

] Coveriay Da-naized 5.,

The result is quite satisfactory, but seems to be oversmoothed around the discontinuities of the
signal. This can be seen by looking at the residuals, and zooming on a breakdown point, for

example around position 800.

Signal (=)

20 ' :
1t lemm«w
1] 1 0

De-Moized Signal (ng

20
10

aa =10

900

Residuals =5 -Dg "

Lo
Come bk

aa

doo 300

Selecting a Thresholding Method

Select hard for the thresholding mode instead of soft, and then click the denoise button.

The result is of good quality and the residuals look like a white noise sample. To investigate this last
point, you can get more information on residuals by clicking the Residuals button.

200

00

1-D Stationary Wavelet Transform

Importing and Exporting from the Wavelet Analysis App

The tool lets you save the denoised signal to disk. The toolbox creates a MAT-file in the current folder
with a name of your choice.

To save the above denoised signal, use the menu option File > Save denoised Signal. A dialog box
appears that lets you specify a folder and filename for storing the signal. Type the name dnoibloc.
After saving the signal data to the file dnoibloc.mat, load the variables into your workspace:

load dnoibloc

whos

Name Size Bytes Class
dnoibloc 1x1024 8192 double array
thrParams 1x5 580 cell array
wname 1x3 6 char array

The denoised signal is given by dnoibloc. In addition, the parameters of the denoising process are
available. The wavelet name is contained in wname:

wname

wname =
dbl

and the level dependent thresholds are encoded in thrParams, which is a cell array of length 5 (the
level of the decomposition). For i from 1 to 5, thrParams{i} contains the lower and upper bounds of
the interval of thresholding and the threshold value (since interval dependent thresholds are
allowed). For more information, see “1-D Adaptive Thresholding of Wavelet Coefficients” on page 6-
39.

For example, for level 1,

thrParams{1}
ans =
1.0e+03 *
0.0010 1.0240 0.0041

Here the lower bound is 1, the upper bound is 1024, and the threshold value is 4.1. The total time-
interval is not segmented and the procedure does not use the interval dependent thresholds.

3-73

3 Discrete Wavelet Analysis

Wavelet Changepoint Detection

3-74

This example shows how to use wavelets to detect changes in the variance of a process. Changes in
variance are important because they often indicate that something fundamental has changed about
the data-generating mechanism.

The first example applies wavelet changepoint detection to a very old time series -- the Nile river
minima data for the years 622 to 1281 AD. The river-level minima were measured at the Roda gauge
near Cairo. Measurements are in meters.

Load and plot the data.

load nileriverminima

years = 622:1284;

figure

plot(years,nileriverminima)
title('Nile River Minimum Levels"')
AX = gca;

AX.XTick = 622:100:1222;

grid on

xlabel('Year"')

ylabel('Meters"')

Nile River Minimum Levels
15 T T T T T T T

14 -

131 1

Meters
e
%]
T
—
——

il | h A “ -

10 1‘ 1

g i i i i i i i
622 722 822 922 1022 1122 1222

Year

Construction began on a new measuring device around 715 AD. Examining the data prior to and after
approximately 722 AD, there appears to be a change in the variability of the data. You can use
wavelets to explore the hypothesis that the variability of the measurements has been affected by the
introduction of a new measuring device.

Wavelet Changepoint Detection

Obtain a multiresolution analysis (MRA) of the data using the Haar wavelet.

wt = modwt(nileriverminima, 'haar',4);
mra = modwtmra(wt, 'haar');

Plot the MRA and focus on the level-one and level-two details.

figure

subplot(2,1,1)
plot(years,mra(l,:))
title('Level 1 Details')
subplot(2,1,2)
plot(years,mra(2,:))
title('Level 2 Details')
AX = gca;

AX.XTick = 622:100:1222;
xlabel('Years')

Level 1 Details

et

-2
&00 00 B00 ano 1000 1100 1200 1300
; Level 2 Details

051 b

—_—
i

gAY

05 -

=
—=—

_.I i i i i i i i

22 722 B2z g2z 1022 1122 1222
Years

Apply an overall change of variance test to the wavelet coefficients.

for JJ = 1:5
pts Opt = wvarchg(wt(JJ,:),2);
changepoints{JJ} = pts Opt;

end

cellfun(@(x) ~isempty(x),changepoints, 'uni',0)

ans =

3-75

3 Discrete Wavelet Analysis

1x5 cell array

{[1]} {[e]} {101} {101} {01}

Determine the year corresponding to the detected change of variance.

years(cell2mat(changepoints))

ans =

721

Split the data into two segments. The first segment includes the years 622 to 721 when the fine-scale
wavelet coefficients indicate a change in variance. The second segment contains the years 722 to
1284. Obtain unbiased estimates of the wavelet variance by scale.

tspre = nileriverminima(1:100);

tspost = nileriverminima(101l:end);

wpre = modwt(tspre, ‘haar',4);

wpost = modwt(tspost, 'haar',4);

wvarpre = modwtvar(wpre, 'haar',0.95, 'table")
wvarpost = modwtvar(wpost, 'haar',0.95, 'table')

wvarpre =
5x4 table
NJ Lower Variance Upper
D1 99 0.25199 0.36053 0.55846
D2 97 0.15367 0.25149 0.48477
D3 93 0.056137 0.11014 0.30622
D4 85 0.018881 0.047427 0.26453
S4 85 0.017875 0.0449 0.25044
wvarpost =
5x4 table
NJ Lower Variance Upper
D1 562 0.11394 0.13354 0.15869
D2 560 0.085288 0.10639 0.13648
D3 556 0.0693 0.094168 0.13539
D4 548 0.053644 0.081877 0.14024
S4 548 0.24608 0.37558 0.64329

Compare the results.

3-76

Wavelet Changepoint Detection

Vpre = table2array(wvarpre);
Vpost = table2array(wvarpost);
Vpre = Vpre(l:end-1,2:end);
Vpost = Vpost(l:end-1,2:end);

Vpre(:,1)
Vpre(:,3)

Vpre(:,2)-Vpre(:,1);
Vpre(:,3)-Vpre(:,2);

Vpost(:,1)
Vpost(:,3)

Vpost(:,2)-Vpost(:,1);
Vpost(:,3)-Vpost(:,2);

figure

errorbar(l:4,Vpre(:,2),Vpre(:,1),Vpre(:,3),'ko",...
'MarkerFaceColor',[0 0 0])

hold on

errorbar(1l.5:4.5,Vpost(:,2),Vpost(:,1),Vpost(:,3),'b™",...
'MarkerFaceColor',[0 0 1])

set(gca, 'xtick',1.25:4.25)

set(gca, 'xticklabel',{'2 Year','4 Years','8 Years',6'1l6 Years',6 '32 Years'})

grid on

ylabel('Variance')

title('Wavelet Variance 622-721 and 722-1284 by Scale', 'fontsize',14)

legend('Years 622-721"', 'Years 722-1284','Location', 'NorthEast')

Wavelet Variance 622-721 and 722-1284 by Scale

0.6
+ ® Years 622-721
& Years 722-1284
051 - .
0.4 .
]
[ab]
]
C ——
Zosf 1
(0]
> 1) T
0271 b
4 : _
0.1 }; }; A

D 1 1 1 1
2 Year 4 Years 8 Years 16 Years

The wavelet variance indicates a significant change in variance between the 622-721 and 722-1284
data over scales of 2 and 4 years.

3-77

3 Discrete Wavelet Analysis

The above example used the Haar wavelet filter with only two coefficients because of concern over
boundary effects with the relatively small time series (100 samples from 622-721). If your data are
approximately first or second-order difference stationary, you can substitute the biased estimate
using the 'reflection' boundary. This permits you to use a longer wavelet filter without worrying about
boundary coefficients. Repeat the analysis using the default 'sym4' wavelet.

wpre = modwt(tspre,4, 'reflection');

wpost = modwt(tspost,4, 'reflection');

wvarpre = modwtvar(wpre,[],[], 'EstimatorType', 'biased’, ...
'Boundary', 'reflection', 'table');

wvarpost = modwtvar(wpost,[],[], 'EstimatorType', 'biased’, ...
'Boundary', 'reflection', 'table');

Plot the results.

Vpre = table2array(wvarpre);
Vpost = table2array(wvarpost);
Vpre = Vpre(l:end-1,2:end);
Vpost = Vpost(l:end-1,2:end);

Vpre(:,1) = Vpre(:,2)-Vpre(:,1);

Vpre(:,3) = Vpre(:,3)-Vpre(:,2);

Vpost(:,1) = Vpost(:,2)-Vpost(:,1);

Vpost(:,3) = Vpost(:,3)-Vpost(:,2);

figure
errorbar(l:4,Vpre(:,2),Vpre(:,1),Vpre(:,3), " 'ko"', '"MarkerFaceColor',[0 0 0])
hold on

errorbar(1.5:4.5,Vpost(:,2),Vpost(:,1),Vpost(:,3), " 'b”", 'MarkerFaceColor',[0 0 1])
set(gca, 'xtick',1.25:4.25)

set(gca, 'xticklabel',{'2 Years','4 Years', '8 Years', '1l6 Years',k6 '32 Years'})
grid on

ylabel('Variance')

title({'Wavelet Variance 622-721 and 722-1284 by Scale';

'Biased Estimate -- Reflection Boundary'}, 'fontsize',14)
legend('622-721"','722-1284", 'Location', 'NorthEast')
hold off

3-78

Wavelet Changepoint Detection

Wavelet Variance 622-721 and 722-1284 by Scale
Biased Estimate -- Reflection Boundary

0.5

1 ® 522721
0.45 71 A 7221284

0.4 T

Variance
[
[%]
n
T
1

0.05T

D 1 1 1 1
2 Years 4 Years 8 Years 16 Years

The conclusion is reinforced. There is a significant difference in the variance of the data over scales
of 2 and 4 years, but not at longer scales. You can conclude that something has changed about the
process variance.

In financial time series, you can use wavelets to detect changes in volatility. To illustrate this,
consider the quarterly chain-weighted U.S. real GDP data for 1974Q1 to 2012Q4. The data were
transformed by first taking the natural logarithm and then calculating the year-over-year difference.
Obtain the wavelet transform (MODWT) of the real GDP data down to level six with the 'db2' wavelet.
Examine the variance of the data and compare that to the variances by scale obtained with the
MODWT.

load GDPcomponents

realgdpwt = modwt(realgdp, 'db2',6, 'reflection');
gdpmra = modwtmra(realgdpwt, 'db2', 'reflection');
vardata = var(realgdp,1);

varwt = var(realgdpwt(:,1l:numel(realgdp)),1,2);

In vardata you have the variance for the aggregate GDP time series. In varwt you have the variance
by scale for the MODWT. There are seven elements in varwt because you obtained the MODWT down
to level six resulting in six wavelet coefficient variances and one scaling coefficient variance. Sum the
variances by scale to see that the variance is preserved. Plot the wavelet variances by scale ignoring
the scaling coefficient variance.

totalMODWTvar = sum(varwt);

bar(varwt(l:end-1,:))
AX = gca;

3-79

3 Discrete Wavelet Analysis

AX.XTickLabels = {'[2 4)','[4 8)',"'[8 16)"','[16 32)','[32 64)"','[64 128)'};
xlabel('Quarters"')

ylabel('Variance')

title('Wavelet Variance by Scale')

o X 104 Wavelet Variance by Scale

=
tn

Variance

0.5

[2 4) [48) B16) [1632) [3264) [64128)
Quarters

Because this data is quarterly, the first scale captures variations between two and four quarters, the
second scale between four and eight, the third between 8 and 16, and so on.

From the MODWT and a simple bar plot, you see that cycles in the data between 8 and 32 quarters
account for the largest variance in the GDP data. If you consider the wavelet variances at these
scales, they account for 57% of the variability in the GDP data. This means that oscillations in the
GDP over a period of 2 to 8 years account for most of the variability seen in the time series.

Plot the level-one details, D1. These details capture oscillations in the data between two and four
quarters in duration.

helperFinancialDataExamplel(gdpmra(l,:),years,...
'Year over Year Real U.S. GDP - D1')

3-80

Wavelet Changepoint Detection

Year over Year Real U.5. GDP - D1

0.015 T

0.01 N

0.005 ‘

VL' u"}”’ﬂ.t ! |

—_—
—

rh "I'l |'J|M'u'»f i .'ﬂl "“*"'""i.'\'i}ﬂl'

-0.005 ‘

—

0. 1

—DD15 i i i Il Il 1
1947 1957 1967 1977 1987 1997 2007

Year

Examining the level-one details, it appears there is a reduction of variance beginning in the 1980s.

Test the level-one wavelet coefficients for significant variance changepoints.

pts Opt = wvarchg(realgdpwt(1l,1l:numel(realgdp)),2);
years(pts_Opt)

ans =

1982

There is a variance changepoint identified in 1982. This example does not correct for the delay
introduced by the 'db2' wavelet at level one. However, that delay is only two samples so it does not
appreciably affect the results.

To assess changes in the volatility of the GDP data pre and post 1982, split the original data into pre-
and post-changepoint series. Obtain the wavelet transforms of the pre and post datasets. In this case,
the series are relatively short so use the Haar wavelet to minimize the number of boundary
coefficients. Compute unbiased estimates of the wavelet variance by scale and plot the result.

tspre = realgdp(l:pts Opt);

tspost = realgdp(pts Opt+l:end);

wtpre = modwt(tspre, 'haar',5);

wtpost modwt (tspost, 'haar',5);

prevar = modwtvar(wtpre, 'haar', 'table');

3-81

3 Discrete Wavelet Analysis

3-82

postvar = modwtvar(wtpost, 'haar', 'table');

xlab = {'[2Q,4Q)"','[4Q,8Q)","'[8Q,16Q)"',"'[16Q,32Q)"', '[32Q,64Q)'};
helperFinancialDataExampleVariancePlot(prevar,postvar, 'table',xlab)
title('Wavelet Variance By Scale')

legend('Pre 1982 Q2', 'Post 1982 Q2', 'Location', 'NorthWest')

w1074 Wavelet Variance By Scale

® Pre 1982 Q2 L
ar & Post1982 Q2 -

[
e
!

. A

D 1
[20,4Q) [40,8Q) [8Q,16Q) [160,32Q) [320,64Q)

From the preceding plot, it appears there are significant differences between the pre-1982Q2 and
post-1982Q2 variances at scales between 2 and 16 quarters.

Because the time series are so short in this example, it can be useful to use biased estimates of the
variance. Biased estimates do not remove boundary coefficients. Use a 'db2' wavelet filter with four
coefficients.

wtpre = modwt(tspre, 'db2',5, 'reflection');

wtpost modwt (tspost, 'db2',5, 'reflection');

prevar modwtvar(wtpre, 'db2',0.95, 'EstimatorType', 'biased', 'table');
postvar = modwtvar(wtpost, 'db2',0.95, 'EstimatorType', 'biased', 'table');
xlab = {'[2Q,4Q)"','[4Q,8Q)","'[8Q,16Q)"',"'[16Q,32Q)"', '[32Q,64Q)'};

figure
helperFinancialDataExampleVariancePlot(prevar,postvar, 'table',xlab)
title('Wavelet Variance By Scale')

legend('Pre 1982 Q2', 'Post 1982 Q2', 'Location', 'NorthWest')

Wavelet Changepoint Detection

6 X 1074 Wavelet Variance By Scale
® Pre198202
A Post1o82 Q2 T
5 - -
4 - -
.- —_
3 - -
2r B ® T
17 N L 1
1 &
Y - 1
DT I .‘ I I I I
[2Q,40) [4Q,80) [8Q,16Q) [160,32Q) [320.640Q)

The results confirm our original finding that there is a reduction in volatility over scales from 2 to 16
quarters.

Using the wavelet transform allows you to focus on scales where the change in volatility is localized.
To see this, examine a plot of the raw data along with the level-one wavelet details.

subplot(2,1,1)
helperFinancialDataExamplel(realgdp,years,...
'Year over Year Real U.S. GDP -- Raw Data')
subplot(2,1,2)
helperFinancialDataExamplel(gdpmra(l,:),years,...
'Year over Year Real U.S. GDP -- Wavelet Level 1 Details')

3-83

3 Discrete Wavelet Analysis

3-84

Year over Year Real U.S. GDP -- Raw Data

015 T T
01F ||I||| p i
[i\ f
0.05 It | I". | (Il Iﬁ |Illl|| ’n”)l II| ™ 'JI'II Iﬁ'-. .I'.P | || I". . T
VOV LY .-Hra'1|JH v AT ey
0 -|'|| | qu|| Wl .ll LI'I(I) u l'a| I]H' '/ll |I MH"L«’ v “ M
W I \ " l‘J
-0.05 ' ' ' : : :
1947 1957 1967 1977 1987 1897 2007
Year
Year over Year Real U.S. GDP -- Wavelet Level 1 Details
001 F T T T T T T -
g e e Y
gk | R W Nl
-0.005 l \ l ! N
001 :
1947 'IEIIET 'IEIIBT 'IEIIT? 1EIIET 'IEIIEIT EDIUT

Year

The shaded region is referred to as the "Great Moderation" signifying a period of decreased
macroeconomic volatility in the U.S. beginning in the mid 1980s.

Examining the aggregate data, it is not clear that there is in fact reduced volatility in this period.
However, the wavelet level-one details uncover the change in volatility.

Scale-Localized Volatility and Correlation

Scale-Localized Volatility and Correlation

There are a number of different variations of the wavelet transform. This example focuses on the
maximal overlap discrete wavelet transform (MODWT). The MODWT is an undecimated wavelet
transform over dyadic (powers of two) scales, which is frequently used with financial data. One nice
feature of the MODWT for time series analysis is that it partitions the data variance by scale. To
illustrate this, consider the quarterly chain-weighted U.S. real GDP data for 1974Q1 to 2012Q4. The
data were transformed by first taking the natural logarithm and then calculating the year-over-year
difference. Obtain the MODWT of the real GDP data down to level six with the 'db2' wavelet. Examine
the variance of the data and compare that to the variances by scale obtained with the MODWT.

load GDPcomponents

realgdpwt = modwt(realgdp, 'db2',6);
vardata = var(realgdp,1);

varwt = var(realgdpwt,1,2);

In vardata you have the variance for the aggregate GDP time series. In varwt you have the variance
by scale for the MODWT. There are seven elements in varwt because you obtained the MODWT down
to level six resulting in six wavelet coefficient variances and one scaling coefficient variance. Sum the
variances by scale to see that the variance is preserved. Plot the wavelet variances by scale ignoring
the scaling coefficient variance.

totalMODWTvar = sum(varwt);

bar(varwt(l:end-1,:))

AX = gca;

AX.XTickLabels = {'[2 4)','[4 8)','[8 16)"','[16 32)','[32 64)"','[64 128)'};
xlabel('Quarters')

ylabel('Variance')

title('Wavelet Variance by Scale')

3-85

3 Discrete Wavelet Analysis

3-86

b X 104 Wavelet Variance by Scale

=&
on

Variance

0.5

(2 4) [4 8) B16) [1632) [3264) [64 128)
Quarters

Because this data is quarterly, the first scale captures variations between two and four quarters, the
second scale between four and eight, the third between 8 and 16, and so on.

From the MODWT and a simple bar plot, you see that cycles in the data between 8 and 32 quarters
account for the largest variance in the GDP data. If you consider the wavelet variances at these
scales, they account for 57% of the variability in the GDP data. This means that oscillations in the
GDP over a period of 2 to 8 years account for most of the variability seen in the time series.

Wavelet analysis can often reveal changes in volatility not evident in aggregate data. Begin with a
plot of the GDP data.

helperFinancialDataExamplel(realgdp,years, 'Year over Year Real U.S. GDP')

Scale-Localized Volatility and Correlation

Year over Year Real U.5. GDP

0.14

|
0.08 || i| pl
0.06 | l\ II‘l |
00a | | ‘ L
0.02 | ‘ M

002F | U

0.04 1

—DD‘E i i i Il Il 1
1947 1957 1967 1977 1987 1997 2007

Year

The shaded region is referred to as the "Great Moderation" signifying a period of decreased
macroeconomic volatility in the U.S. beginning in the mid 1980s.

Examining the aggregate data, it is not clear that there is in fact reduced volatility in this period. Use
wavelets to investigate this by first obtaining a multiresolution analysis of the real GDP data using the
'db2' wavelet down to level 6.

realgdpwt =
gdpmra =

modwt (realgdp, 'db2',6, 'reflection');
modwtmra(realgdpwt, 'db2', 'reflection');

Plot the level-one details, D1. These details capture oscillations in the data between two and four
quarters in duration.

helperFinancialDataExamplel(gdpmra(l,:),years,...
'Year over Year Real U.S. GDP - D1')

3-87

3 Discrete Wavelet Analysis

3-88

Year over Year Real U.5. GDP - D1

0.015 T

0.01 N

0.005 ‘

VL' u"}”’ﬂ.t ! |

—_—
—

rh "I'l |'J|M'u'»f i .'ﬂl "“*"'""i.'\'i}ﬂl'

-0.005 ‘

—

0. 1

—DD15 i i i Il Il 1
1947 1957 1967 1977 1987 1997 2007

Year

Examining the level-one details, it appears there is a reduction of variance in the period of the Great
Moderation.

Test the level-one wavelet coefficients for significant variance changepoints.

[pts_Opt,kopt,t est] = wvarchg(realgdpwt(1l,1l:numel(realgdp)),2);
years(pts_Opt)

ans =

1982

There is a variance changepoint identified in 1982. This example does not correct for the delay
introduced by the 'db2' wavelet at level one. However, that delay is only two samples so it does not
appreciably affect the results.

To assess changes in the volatility of the GDP data pre and post 1982, split the original data into pre-
and post-changepoint series. Obtain the wavelet transforms of the pre and post datasets. In this case,
the series are relatively short so use the Haar wavelet to minimize the number of boundary
coefficients. Compute unbiased estimates of the wavelet variance by scale and plot the result.

tspre = realgdp(l:pts Opt);
tspost = realgdp(pts Opt+l:end);
wtpre = modwt(tspre, 'haar',5);
wtpost = modwt(tspost, 'haar',5);

Scale-Localized Volatility and Correlation

prevar = modwtvar(wtpre, ‘haar', 'table');

postvar = modwtvar(wtpost, 'haar', 'table');

xlab = {'[2Q,4Q)"','[4Q,8Q)","'[8Q,16Q)","'[16Q,32Q)"', '[32Q,64Q)'};
helperFinancialDataExampleVariancePlot(prevar,postvar, 'table',xlab)
title('Wavelet Variance By Scale');

legend('Pre 1982 Q2', 'Post 1982 Q2', 'Location', 'NorthWest');

w1074 Wavelet Variance By Scale

® Pre 1982 Q2 L
ar & Post1982 Q2 -

[
e
!

. A

D 1
[20,4Q) [40,8Q) [8Q,16Q) [160,32Q) [320,64Q)

From the preceding plot, it appears there are significant differences between the pre-1982Q2 and
post-1982Q2 variances at scales between 2 and 16 quarters.

Because the time series are so short in this example, it can be useful to use biased estimates of the
variance. Biased estimates do not remove boundary coefficients. Use a 'db2' wavelet filter with four
coefficients.

wtpre = modwt(tspre, 'db2',5, 'reflection');

wtpost modwt (tspost, 'db2',5, 'reflection');

prevar modwtvar(wtpre, 'db2',0.95, 'EstimatorType', 'biased', 'table');
postvar = modwtvar(wtpost, 'db2',0.95, 'EstimatorType', 'biased', 'table');
xlab = {'[2Q,4Q)"','[4Q,8Q)","'[8Q,16Q)"',"'[16Q,32Q)"', '[32Q,64Q)'};
figure;
helperFinancialDataExampleVariancePlot(prevar,postvar, 'table',xlab)
title('Wavelet Variance By Scale');

legend('Pre 1982 Q2', 'Post 1982 Q2', 'Location', 'NorthWest');

3-89

3 Discrete Wavelet Analysis

1074 Wavelet Variance By Scale
'Er T T T T T
® Pre198202
A Post1o82 Q2 T
5 - -
4 - -
.- —_
3 - -
2r B ® T
17 N L 1
1 &
w . ~J
D I .‘ I I I I
[2Q,40) [4Q,80) [8Q,16Q) [160,32Q) [320.640Q)

The results confirm our original finding that the Great Moderation is manifested in volatility
reductions over scales from 2 to 16 quarters.

You can also use wavelets to analyze correlation between two datasets by scale. Examine the
correlation between the aggregate data on government spending and private investment. The data
cover the same period as the real GDP data and are transformed in the exact same way.

[rho,pval] = corrcoef(privateinvest,govtexp);

Government spending and personal investment demonstrate a weak, but statistically significant,
negative correlation of -0.215. Repeat this analysis using the MODWT.

wtPI = modwt(privateinvest, 'db2',5, 'reflection');
wtGE = modwt (govtexp, 'db2',5, 'reflection');
wcorrtable = modwtcorr(wtPI,wtGE, 'db2',0.95, 'reflection', 'table');

display(wcorrtable)
wcorrtable =
6x6 table
NJ Lower Rho Upper Pvalue AdjustedPvalue
D1 257 -0.29187 -0.12602 0.047192 0.1531 0.7502
D2 251 -0.54836 -0.35147 -0.11766 0.0040933 0.060171

3-90

Scale-Localized Volatility and Correlation

D3 239 -0.62443 -0.35248 -0.0043207 0.047857 0.35175
D4 215 -0.70466 -0.32112 0.20764 0.22523 0.82773
D5 167 -0.63284 0.12965 0.76448 0.75962 1
S5 167 -0.63428 0.12728 0.76347 0.76392 1

The multiscale correlation available with the MODWT shows a significant negative correlation only at
scale 2, which corresponds to cycles in the data between 4 and 8 quarters. Even this correlation is
only marginally significant when adjusting for multiple comparisons.

The multiscale correlation analysis reveals that the slight negative correlation in the aggregate data
is driven by the behavior of the data over scales of four to eight quarters. When you consider the data
over different time periods (scales), there is no significant correlation.

With financial data, there is often a leading or lagging relationship between variables. In those cases,
it is useful to examine the cross-correlation sequence to determine if lagging one variable with
respect to another maximizes their cross-correlation. To illustrate this, consider the correlation
between two components of the GDP -- personal consumption expenditures and gross private
domestic investment.

piwt = modwt(privateinvest, 'fk8',5);
pcwt = modwt(pc, 'fk8',5);

figure;

modwtcorr(piwt,pcwt, 'fk8")

Correlation by Scale -- Wavelet Coefficients

0.8r T p

0.6 7

D---------------------------q

Correlation Coefficient

_1 C i i i]
1 2 3 4 5
Log(scale) -- base 2

Personal expenditure and personal investment are negatively correlated over a period of 2-4 quarters.
At longer scales, there is a strong positive correlation between personal expenditure and personal

3-91

3 Discrete Wavelet Analysis

3-92

investment. Examine the wavelet cross-correlation sequence at the scale representing 2-4 quarter
cycles.

[xcseq,xcseqci, lags] = modwtxcorr(piwt,pcwt, 'fk8');

zerolag = floor(numel(xcseq{1})/2)+1;
plot(lags{1}(zerolag:zerolag+20),xcseq{l}(zerolag:zerolag+20));

hold on;
plot(lags{1}(zerolag:zerolag+20),xcseqci{l}(zerolag:zerolag+20,:), " 'r--");
xlabel('Lag (Quarters)');
grid on;

title('Wavelet Cross-Correlation Sequence -- [2Q,4Q)');

Wavelet Cross-Correlation Sequence -- [2Q,4Q)
D. B T T T T T T T T T

0e6r |
0.4 I

0.2 1y

8 10 12 14 16 18 20
Lag (Quarters)

The finest-scale wavelet cross-correlation sequence shows a peak positive correlation at a lag of one

quarter. This indicates that personal investment lags personal expenditures by one quarter.

References:

Aguigar-Conraria, L. Martins. M.F,, and Soares, M.]. "The Yield Curve and the Macro-Economy Across

Time and Frequencies.", Journal of Economic Dynamics and Control, 36, 12, 1950-1970, 2012.

Crowley, PM. "A Guide to Wavelets for Economists.", Journal of Economic Surveys, 21, 2, 207-267,
2007.

Gallegati, M and Semmler, W. (Eds.) "Wavelet Applications in Economics and Finance", Springer,
2014.

Scale-Localized Volatility and Correlation

Percival, D.B. and Walden, A.T. "Wavelet Methods for Time Series Analysis", Cambridge University
Press, 2000.

3-93

3 Discrete Wavelet Analysis

R Wave Detection in the ECG

3-94

This example shows how to use wavelets to analyze electrocardiogram (ECG) signals. ECG signals are
frequently nonstationary meaning that their frequency content changes over time. These changes are
the events of interest.

Wavelets decompose signals into time-varying frequency (scale) components. Because signal features
are often localized in time and frequency, analysis and estimation are easier when working with
sparser (reduced) representations.

The QRS complex consists of three deflections in the ECG waveform. The QRS complex reflects the
depolarization of the right and left ventricles and is the most prominent feature of the human ECG.

Load and plot an ECG waveform where the R peaks of the QRS complex have been annotated by two
or more cardiologists. The ECG data and annotations are taken from the MIT-BIH Arrhythmia
Database. The data are sampled at 360 Hz.

load mit200

figure

plot(tm,ecgsig)

hold on
plot(tm(ann),ecgsig(ann), 'ro')
xlabel('Seconds")
ylabel('Amplitude")
title('Subject - MIT-BIH 200')

Subject - MIT-BIH 200
2.5 T T T T

€

['\.

Amplitude
=
-

1.5 1
b o o
2r @ O 7
_2. 5 L L L L L
0 5 10 15 20 25 30
Seconds

R Wave Detection in the ECG

You can use wavelets to build an automatic QRS detector for use in applications like R-R interval
estimation.

There are two keys for using wavelets as general feature detectors:

* The wavelet transform separates signal components into different frequency bands enabling a
sparser representation of the signal.

* You can often find a wavelet which resembles the feature you are trying to detect.

The 'sym4' wavelet resembles the QRS complex, which makes it a good choice for QRS detection. To
illustrate this more clearly, extract a QRS complex and plot the result with a dilated and translated
'sym4' wavelet for comparison.

gqrsEx = ecgsig(4560:4810);

[mpdict,~,~,longs] = wmpdictionary(numel(qrsEx), 'lstcpt',{{'symd',3}});
figure

plot(qgrsEx)

hold on

plot(2*circshift(mpdict(:,11),[-2 0]),'r")

axis tight

legend('QRS Complex', 'Sym4 Wavelet')

title('Comparison of Sym4 Wavelet and QRS Complex')

Comparison of Sym4 Wavelet and QRS Complex

I\I T
1t I QRS Complex | |
/ Symd Wavelet
|
0.8 r }\ | -
|
|
0.6 |]
|
||
0.4 I|| |]
|
0.2 F |||| | -
|
'Il | P
D B - ||| Illh- - T L — -
J s R
_ Jfﬁ\“ _,-U-'“-.fﬂ\-"_n S I"-JI \/ i H'-. \l;" hain s
o S -
[LT
| f
0.4 : . - .
. 50 100 150 200 250

Use the maximal overlap discrete wavelet transform (MODWT) to enhance the R peaks in the ECG
waveform. The MODWT is an undecimated wavelet transform, which handles arbitrary sample sizes.

3-95

3 Discrete Wavelet Analysis

3-96

First, decompose the ECG waveform down to level 5 using the default 'sym4' wavelet. Then,
reconstruct a frequency-localized version of the ECG waveform using only the wavelet coefficients at
scales 4 and 5. The scales correspond to the following approximate frequency bands.

e Scale4 --[11.25, 22.5) Hz
e Scale 5 -[5.625, 11.25) Hz.

This covers the passband shown to maximize QRS energy.

wt = modwt(ecgsig,5);

wtrec = zeros(size(wt));
wtrec(4:5,:) = wt(4:5,:);
y = imodwt(wtrec, 'sym4');

Use the squared absolute values of the signal approximation built from the wavelet coefficients and
employ a peak finding algorithm to identify the R peaks.

If you have Signal Processing Toolbox™, you can use findpeaks to locate the peaks. Plot the R-peak
waveform obtained with the wavelet transform annotated with the automatically-detected peak
locations.

y = abs(y)."2;

[qrspeaks,locs] = findpeaks(y,tm, 'MinPeakHeight',0.35, ...
'MinPeakDistance',0.150);

figure

plot(tm,y)

hold on

plot(locs,qrspeaks, 'ro")

xlabel('Seconds')

title('R Peaks Localized by Wavelet Transform with Automatic Annotations')

R Wave Detection in the ECG

R Peaks Localized by Wavelet Transform with Automatic Annotations

1.2 T T T
Q
Q
Q
® @ o
1r o o .
Q
Q
08 @ | @ i
o ¢ Q o Q
ol | ¢ @
i @ Q@ i
0.6 @ O o @ Go o o]
o ol of Yo
Q@ o)
0.4 Hp ol i
02r .
o LLLLLLELUL L L 0L e
0 5 10 15 20 25 30
Seconds

Add the expert annotations to the R-peak waveform. Automatic peak detection times are considered
accurate if within 150 msec of the true peak (+75 msec).

plot(tm(ann),y(ann), "k*')
title('R peaks Localized by Wavelet Transform with Expert Annotations')

3-97

3 Discrete Wavelet Analysis

3-98

R peaks Localized by Wavelet Transform with Expert Annotations

1.2 T
®
&
¥ £ %
1F ® .
¥ %
%
08 # | % i
; F
%
o 9 [T % iy ¢
. $® #* i
0.6 ¥ . % ¥ # ol % #
@ ¥ g |¥se
&
0.4 1% @ | ¥ i
0.2t 1
S e
0 5 10 15 20 25 30

Seconds

At the command line, you can compare the values of tm(ann) and locs, which are the expert times
and automatic peak detection times respectively. Enhancing the R peaks with the wavelet transform
results in a hit rate of 100% and no false positives. The calculated heart rate using the wavelet
transform is 88.60 beats/minute compared to 88.72 beats/minute for the annotated waveform.

If you try to work on the square magnitudes of the original data, you find the capability of the wavelet
transform to isolate the R peaks makes the detection problem much easier. Working on the raw data
can cause misidentifications such as when the squared S-wave peak exceeds the R-wave peak around
10.4 seconds.

figure

plot(tm,ecgsig, 'k--")

hold on

plot(tm,y,'r', " 'linewidth',1.5)

plot(tm,abs(ecgsig).”2,'b")

plot(tm(ann),ecgsig(ann), 'ro', 'markerfacecolor',[1 0 0])

set(gca, 'xlim',[10.2 12])

legend('Raw Data', 'Wavelet Reconstruction', 'Raw Data Squared',
'"Location', 'SouthEast');

xlabel('Seconds')

R Wave Detection in the ECG

! il

I ‘I — — —Raw Data
O6r Y Wavelet Reconstruction | |
Raw Data Squared
—Dﬂ- 1 1 1 1 1 1 1 1
10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12

Seconds

Using findpeaks on the squared magnitudes of the raw data results in twelve false positives.

[qrspeaks,locs] = findpeaks(ecgsig.”2,tm, 'MinPeakHeight',0.35,...
'MinPeakDistance',0.150);

In addition to switches in polarity of the R peaks, the ECG is often corrupted by noise.

load mit203

figure

plot(tm,ecgsig)

hold on

plot(tm(ann),ecgsig(ann), 'ro")

xlabel('Seconds")

ylabel('Amplitude")

title('Subject - MIT-BIH 203 with Expert Annotations')

3-99

3 Discrete Wavelet Analysis

Subject - MIT-BIH 203 with Expert Annotations

2.5

Amplitude

1 D 1 1 1 1
1] 5 10 15 20 25 30
Seconds

Use the MODWT to isolate the R peaks. Use findpeaks to determine the peak locations. Plot the R-
peak waveform along with the expert and automatic annotations.

wt = modwt(ecgsig,5);

wtrec = zeros(size(wt));

wtrec(4:5,:) = wt(4:5,:);

y = imodwt(wtrec, 'symd');

y = abs(y)."2;

[qrspeaks,locs] = findpeaks(y,tm, 'MinPeakHeight',0.1,...
'MinPeakDistance',0.150);

figure

plot(tm,y)

title('R-Waves Localized by Wavelet Transform')

hold on

hwav = plot(locs,qgrspeaks, 'ro');

hexp = plot(tm(ann),y(ann), 'k*');

xlabel('Seconds"')

legend([hwav hexpl, 'Automatic', 'Expert', 'Location', 'NorthEast');

3-100

R Wave Detection in the ECG

R-Waves Localized by Wavelet Transform

1.5 : : . . .
* O Automatic
* Expert
¥ & g F *
% & S $@$
* * S5
1+ % ™ @ & % -
% %
&
®l e % &
* t
)
j %
* % ¥
osf ||® % .
&
NN] .
1] 5 10 15 20 25 30
Seconds

The hit rate is again 100% with zero false alarms.

The previous examples used a very simple wavelet QRS detector based on a signal approximation
constructed from modwt. The goal was to demonstrate the ability of the wavelet transform to isolate
signal components, not to build the most robust wavelet-transform-based QRS detector. It is possible,
for example, to exploit the fact that the wavelet transform provides a multiscale analysis of the signal
to enhance peak detection.

References

Goldberger A. L., L. A. N. Amaral, L. Glass,]J. M. Hausdorff, P. Ch. Ivanov, R. G. Mark, J. E. Mietus, G.
B. Moody, C-K Peng, H. E. Stanley. "PhysioBank, PhysioToolkit, and PhysioNet: Components of a New
Research Resource for Complex Physiologic Signals." Circulation 101. Vol.23, e215-e220, 2000.
http://circ.ahajournals.org/cgi/content/full/101/23/e215

Moody, G. B. "Evaluating ECG Analyzers". http://www.physionet.org/physiotools/
wfdb/doc/wag-src/evall. tex

Moody G. B., R. G. Mark. "The impact of the MIT-BIH Arrhythmia Database." IEEE Eng in Med and
Biol. Vol. 20, Number 3, 2001), pp. 45-50 .

3-101

3 Discrete Wavelet Analysis

See Also

More About
. Model Interpretability in MATLAB

3-102

https://www.mathworks.com/videos/explainable-machine-learning-with-matlab-1597917680801.html

Wavelet Cross-Correlation for Lead-Lag Analysis

Wavelet Cross-Correlation for Lead-Lag Analysis

This example shows how to use wavelet cross-correlation to measure similarity between two signals
at different scales.

Wavelet cross-correlation is simply a scale-localized version of the usual cross-correlation between
two signals. In cross-correlation, you determine the similarity between two sequences by shifting one
relative to the other, multiplying the shifted sequences element by element and summing the result.
For deterministic sequences, you can write this as an ordinary inner product:

<X Vn—k>n = Exnj/n _k Where x,, and y, are sequences (signals) and the bar denotes complex
n

conjugation. The variable, k, is the lag variable and represents the shift applied to yj,. If both x;, and
yn, are real, the complex conjugate is not necessary. Assume that y, is the same sequence as x, but
delayed by L>0 samples, where L is an integer. For concreteness, assume y, = X, — 1¢. If you express

yp in terms of x;, above, you obtain < x;, X, — 10—k >n = Exnin —10 — k- By the Cauchy-Schwartz
n

inequality, the above is maximized when k = — 10. This means if you left shift (advance) y, by 10
samples, you get the maximum cross-correlation sequence value. If x,, is a L-delayed version of yj,
Xn = Vn - [, then the cross-correlation sequence is maximized at k = L. You can show this by using
xcorr.,

Create a triangular signal consisting of 20 samples. Create a noisy shifted version of this signal. The
shift in the peak of the triangle is 3 samples. Plot the x and y sequences.

n = 20;
X0 = 1:n/2;
x1 = (2*x0-1)/n;

x = [x1 fliplr(x1)]';
rng default;
y = [zeros(3,1);x]+0.3*randn(length(x)+3,1);

subplot(2,1,1)

stem(x, 'filled")
axis([0 22 -1 2])
title('Input Sequence')

subplot(2,1,2)

stem(y, 'filled")

axis([0 22 -1 2])
title('Output Sequence')

3-103

3 Discrete Wavelet Analysis

5 Input Sequence

1r J

Leeertt1TTT T 1000,,,

NI adiik

Use xcorr to obtain the cross-correlation sequence and determine the lag where the maximum is
obtained.

[xc,lags] = xcorr(x,y);

[~,I] = max(abs(xc));

figure

stem(lags,xc, 'filled")
legend(sprintf('Maximum at lag %d',lags(I)))
title('Sample Cross-Correlation Sequence')

3-104

Wavelet Cross-Correlation for Lead-Lag Analysis

Sample Cross-Correlation Sequence
1D T T T T T T T T T

| ® Maximum at lag -3
o} ot -

.1_

[nt!] L

-25 20 15 -10 -5 0 5

5

The maximum is found at a lag of -3. The signal y is the second input to xcorr and it is a delayed
version of X. You have to shift y 3 samples to the left (a negative shift) to maximize the cross
correlation. If you reverse the roles of x and y as inputs to xcorr, the maximum lag now occurs at a
positive lag.

[xc,lags] = xcorr(y,x);

[~,I] = max(abs(xc));

figure

stem(lags,xc, 'filled")
legend(sprintf('Maximum at lag %d',lags(I)))
title('Sample Cross-Correlation Sequence')

3-105

3 Discrete Wavelet Analysis

3-106

Sample Cross-Correlation Sequence
1 D T T T T T T T T T
| #® Maximum at lag 3
9r .H. i
° L
BT - .

RE—) Moas

-25 20 15 -10 -5 0 5 10 15 20 25

X is an advanced version of y and you delay x by three samples to maximize the cross correlation.

modwtxcorr is the scale-based version of xcorr. To use modwtxcorr, you first obtain the
nondecimated wavelet transforms.

Apply wavelet cross-correlation to two signals that are shifted versions of each other. Construct two
exponentially-damped 200-Hz sine waves with additive noise. The x signal has its time center at
t = 0.2 seconds while y is centered at t = 0.5 seconds.

t 0:1/2000:1-1/2000;

X sin(2*pi*200*t) . *exp(-50*pi*(t-0.2).72)+0.1*randn(size(t));
y sin(2*pi*200*t).*exp(-50*pi*(t-0.5).72)+0.1*randn(size(t));
figure

plot(t,x)

hold on

plot(t,y)

xlabel('Seconds")

ylabel('Amplitude")

grid on

legend('x"',"'y")

Wavelet Cross-Correlation for Lead-Lag Analysis

1_5 T T T T T T T T T

Amplitude

1] 0.1 02 03 04 05 06 07 0B 09 1
Seconds

You see that x and y are very similar except that y is delayed by 0.3 seconds. Obtain the
nondecimated wavelet transform of x and y down to level 5 using the Fejer-Korovkin (14) wavelet.
The wavelet coefficients at level 3 with a sampling frequency of 2 kHz are an approximate

[2000/ 2% 2000/ 23) bandpass filtering of the inputs. The frequency localization of the Fejer-Korovkin
filters ensures that this bandpass approximation is quite good.

modwt (x, 'fkl4',5);
modwt (y, ' fk14',5);

WX
wy

Obtain the wavelet cross-correlation sequences for the wavelet transforms of x and y. Plot the level 3
wavelet cross-correlation sequence for 2000 lags centered at zero lag. Multiply the lags by the
sampling period to obtain a meaningful time axis.

[xc,~,lags] = modwtxcorr(wx,wy, " 'fkld');

lev = 3;

zerolag = floor(numel(xc{lev})/2+1);

tlag = lags{lev}(zerolag-999:zerolag+1000).*(1/2000);
figure

plot(tlag,xc{lev}(zerolag-999:zerolag+1000))
title('Wavelet Cross-Correlation Sequence (level 3)')
xlabel('Time")

ylabel('Cross-Correlation Coefficient')

3-107

3 Discrete Wavelet Analysis

3-108

Wavelet Cross-Correlation Sequence (level 3)
1 T T T T T T T

Cross-Correlation Coefficient

_1 i i i i i i i i

05 04 03 D2 01 1] 0.1 0.2 0.3 04 05
Time

The cross-correlation sequence peaks at a delay of -0.3 seconds. The wavelet transform of y is the
second input to modwtxcorr. Because the second input of modwtxcorr is shifted relative to the first,
the peak correlation occurs at a negative delay. You have to left shift (advance) the cross-correlation
sequence to align the time series. If you reverse the roles of the inputs to modwtxcorr, you obtain
the peak correlation at a positive lag.

[xc,~,lags] = modwtxcorr(wy,wx, ' 'fkl4d');

lev = 3;

zerolag = floor(numel(xc{lev})/2+1);

tlag = lags{lev}(zerolag-999:zerolag+1000).*(1/2000);
figure

plot(tlag,xc{lev}(zerolag-999:zerolag+1000))
title('Wavelet Cross-Correlation Sequence (level 3)')
xlabel('Time")

ylabel('Cross-Correlation Coefficient')

Wavelet Cross-Correlation for Lead-Lag Analysis

Wavelet Cross-Correlation Sequence (level 3)
1 T T T T T T T

08

Cross-Correlation Coefficient
[

-1
05 04 03 02 01 0 01 02 03 04 05

Time

To show that wavelet cross-correlation enables scale(frequency)-localized correlation, plot the cross-
correlation sequences at levels 1 and 5.

lev = 1;

zerolag = floor(numel(xc{lev})/2+1);

tlag = lags{lev}(zerolag-999:zerolag+1000).*(1/2000);
plot(tlag,xc{lev}(zerolag-999:zerolag+1000))
title('Wavelet Cross-Correlation Sequence (level 1)')
xlabel('Time")

ylabel('Cross-Correlation Coefficient')

3-109

3 Discrete Wavelet Analysis

3-110

Wavelet Cross-Correlation Sequence (level 1)

0.15 T T T T T

0.05

Cross-Correlation Coefficient

-0.05
—“D_1 1 1 i 1 1 1 1 1 1
05 04 03 02 01] 0.1 0.2 0.3 0.4
Time
figure
lev = 5;

zerolag = floor(numel(xc{lev})/2+1);

tlag = lags{lev}(zerolag-999:zerolag+1000).*(1/2000);
plot(tlag,xc{lev}(zerolag-999:zerolag+1000))
title('Wavelet Cross-Correlation Sequence (level 5)')
xlabel('Time")

ylabel('Cross-Correlation Coefficient')

0.5

Wavelet Cross-Correlation for Lead-Lag Analysis

Wavelet Cross-Correlation Sequence (level 5)
D4 T T T T T T T T T

0.3r 7

0.2r1 7

i
MH“" |||nH ‘ iJ

011 ’

i n||n|\ |'| m‘ |ﬂ|||ﬂ|| |

M

i
=]
=k
T
_—
—_—
—

Cross-Correlation Coefficient

—D3 i i i i i i i i i
45 04 03 02 01 0 0.1 0.2 0.3 0.4 0.5

Time

The wavelet cross-correlation sequences at levels 1 and 5 do not show any evidence of the
exponentially-weighted sinusoids due to the bandpass nature of the wavelet transform.

With financial data, there is often a leading or lagging relationship between variables. In those cases,
it is useful to examine the cross-correlation sequence to determine if lagging one variable with
respect to another maximizes their cross-correlation. To illustrate this, consider the correlation
between two components of the GDP -- personal consumption expenditures and gross private
domestic investment. The data is quarterly chain-weighted U.S. real GDP data for 1974Q1 to 2012Q4.
The data were transformed by first taking the natural logarithm and then calculating the year-over-
year difference. Look at the correlation between two components of the GDP -- personal consumption
expenditures, pc, and gross private domestic investment, privateinvest.

load GDPcomponents

piwt = modwt(privateinvest, 'fk8',5);
pcwt = modwt(pc, 'fk8',5);

figure

modwtcorr(piwt, pcwt, ' fk8")

3-111

3 Discrete Wavelet Analysis

3-112

Correlation by Scale -- Wavelet Coefficients

0.8r i? i

0.6 7

041 7

0.2r 1

D---------------------------4

Correlation Coefficient

_1 C i i i]
1 2 3 4 5
Log(scale) -- base 2

Personal expenditure and personal investment are negatively correlated over a period of 2-4 quarters.
At longer scales, there is a strong positive correlation between personal expenditure and personal
investment. Examine the wavelet cross-correlation sequence at the scale representing 2-4 quarter
cycles. Plot the cross-correlation sequence along with 95% confidence intervals.

[xcseq,xcseqci, lags] = modwtxcorr(piwt,pcwt, 'fk8');

zerolag = floor(numel(xcseq{1})/2)+1;

figure

plot(lags{1l}(zerolag:zerolag+20),xcseq{l}(zerolag:zerolag+20))

hold on

plot(lags{1l}(zerolag:zerolag+20),xcseqci{l}(zerolag:zerolag+20,:),'r--")

xlabel('Lag (Quarters)")

ylabel('Cross-Correlation')

grid on

title({'Wavelet Cross-Correlation Sequence -- [2Q,4Q)"';
'Personal Consumption and Private Investment'})

Wavelet Cross-Correlation for Lead-Lag Analysis

Wavelet Cross-Correlation Sequence -- [2Q,4Q)
Personal Consumption and Private Investment

0.8 T

0.6

=
B

0.2

Cross-Correlation

8 0 12
Lag (Quarters)

14 16 18 20

The finest-scale wavelet cross-correlation sequence shows a peak positive correlation at a lag of one
quarter. This indicates that personal investment lags personal expenditures by one quarter. If you
take that lagging relationship into account, then there is a positive correlation between the GDP

components at all scales.

3-113

3 Discrete Wavelet Analysis

1-D Multisignal Analysis

3-114

This section takes you through the features of 1-D multisignal wavelet analysis, compression and
denoising using the Wavelet Toolbox software. The rationale for each topic is the same as in the 1-D
single signal case.

The toolbox provides the following functions for multisignal analysis.

Analysis-Decomposition and Synthesis-Reconstruction Functions

Function Name Purpose
mdwtdec Multisignal wavelet decomposition
mdwtrec Multisignal wavelet reconstruction and extraction of

approximation and detail coefficients

Decomposition Structure Utilities

Function Name Purpose
chgwdeccfs Change multisignal 1-D decomposition coefficients
wdecenergy Multisignal 1-D decomposition energy repartition

Compression and Denoising Functions

Function Name Purpose

mswcmp Multisignal 1-D compression using wavelets

mswcmpscr Multisignal 1-D wavelet compression scores

mswcmptp Multisignal 1-D compression thresholds and performance
mswden Multisignal 1-D denoising using wavelets

mswthresh Perform multisignal 1-D thresholding

You can perform analyses from the MATLAB command line or by using the Wavelet Analyzer app. This
section describes each method. The last section discusses how to exchange signal and coefficient
information between the disk and the graphical tools.
1-D Multisignal Analysis — Command Line
1 Load a file, from the MATLAB prompt, by typing

load thinker

The file thinker.mat contains a single variable X. Use whos to show information about X.

whos

Name Size Bytes Class
X 192x96 147456 double array

2 Plot some signals.

figure;
plot(X(1:5,:)",'r'); hold on

1-D Multisignal Analysis

250

plot(X(21:25,:)','b"); plot(X(31:35,:)','g")
set(gca, 'Xlim',[1,96])
grid

| =y
5%&

20

40 60 80

Perform a wavelet decomposition of signals at level 2 of row signals using the db2 wavelet.
dec = mdwtdec('r',X,2,'db2")
This generates the decomposition structure dec:

dec =
dirDec: 'r'
level: 2
wname: 'db2'
dwtFilters: [1x1 struct]
dwtEXTM: 'sym'
dwtShift: 0
dataSize: [192 96]
ca: [192x26 double]
cd: {[192x49 double] [192x26 double]}

Change wavelet coefficients.

For each signal change the wavelet coefficients by setting all the coefficients of the detail of level
1 to zero.

decBIS = chgwdeccfs(dec,'cd',0,1);

This generates a new decomposition structure decBIS.
Perform a wavelet reconstruction of signals and plot some of the new signals.

Xbis = mdwtrec(decBIS);

figure;

plot(Xbis(1:5,:)','r'); hold on
plot(Xbis(21:25,)','b').
plot(Xbis(31:35,:)','g")

grid; set(gca,'Xlim',[1,96])

3-115

3 Discrete Wavelet Analysis

150

100+

50+

n. 1 1 i
20 40 60 80

Compare old and new signals by plotting them together.
figure; idxSIG = [1 31];
plot(X(idxSIG,:)','r"', " 'linewidth',2); hold on
plot(Xbis(idxSIG,:)','b"','linewidth',2);
grid; set(gca,'Xlim',[1,96])

250

150

| \AA—\A,J

0 éﬂ 40 GIO B‘U
6

3-116

Set the wavelet coefficients at level 1 and 2 for signals 31 to 35 to the value zero, perform a
wavelet reconstruction of signal 31, and compare some of the old and new signals.

decTER = chgwdeccfs(dec,'cd',0,1:2,31:35);

Y = mdwtrec(decTER, 'a',0,31);

figure;

plot(X([1 31],:)','r"', 'linewidth',2); hold on
plot([Xbis(1,:)

1-D Multisignal Analysis

250

150

100+

50+

; Y1','b', 'linewidth',2);
grid; set(gca, 'Xlim',[1,96])

20

40 60 80

Compute the energy of signals and the percentage of energy for wavelet components.
[E,PEC,PECFS] = wdecenergy(dec);
Energy of signals 1 and 31:

Ener 1 31
Ener 1 31

E([1 31])

1.0e+006 *
3.7534
2.2411

Compute the percentage of energy for wavelet components of signals 1 and 31.

PEC 1 31 = PEC([1 31],:)

PEC 1 31 =
99.7760 0.1718 0.0522
99.3850 ©.2926 0.3225

The first column shows the percentage of energy for approximations at level 2. Columns 2 and 3
show the percentage of energy for details at level 2 and 1, respectively.

Display the percentage of energy for wavelet coefficients of signals 1 and 31. As we can see in
the dec structure, there are 26 coefficients for the approximation and the detail at level 2, and
49 coefficients for the detail at level 1.

PECFS 1 = PECFS(1,:); PECFS 31 = PECFS(31,:);
figure;

plot(PECFS_1,'r', 'linewidth',2); hold on
plot(PECFS 31,'b', 'linewidth',2);

grid; set(gca, 'Xlim',[1,size(PECFS,2)1)

3-117

3 Discrete Wavelet Analysis

250

2007

150

100+

50

3-118

40 60 80 100

10 Compress the signals to obtain a percentage of zeros near 95% for the wavelet coefficients.

[XC,decCMP, THRESH] = mswcmp('cmp',dec, 'NO perf',95);
[Ecmp,PECcmp,PECFScmp] = wdecenergy(decCMP);

Plot the original signals 1 and 31, and the corresponding compressed signals.

figure;

plot(X([1 31],:)','r"', 'linewidth',2); hold on
plot(XC([1 31],:)','b"', 'linewidth',2);

grid; set(gca, 'Xlim',[1,96])

Compute thresholds, percentage of energy preserved and percentage of zeros associated with
the L2 perf method preserving at least 95% of energy.

[THR VAL,L2 Perf,NO Perf] = mswcmptp(dec,'L2 perf',95);
idxSIG = [1,31];

Thr = THR VAL (1idxSIG)
Thr =

256.1914

158.6085
L2per = L2 Perf(idxSIG)
L2per =

96.5488

94.7197
NOper = NO Perf(idxSIG)
NOper =

1-D Multisignal Analysis

79.2079
86.1386

Compress the signals to obtain a percentage of zeros near 60% for the wavelet coefficients.
[XC,decCMP,THRESH] = mswcmp('cmp',dec, 'NO _perf',60);

XC signals are the compressed versions of the original signals in the row direction.
Compress the XC signals in the column direction

XX = mswcmp('cmpsig','c',XC, 'db2',2,'NO perf',60);

Plot original signals X and the compressed signals XX as images.

figure;

subplot(1,2,1); image(X)

subplot(1,2,2); image(XX)
colormap (pink(222))

20 40 60 80 20 40 60 80
11 Denoise the signals using the universal threshold:
[XD,decDEN, THRESH] = mswden('den',dec, 'sqtwolog','sln'); figure;
plot(X([1 311,:)','r','linewidth',2); hold on
plot(XD([1 31],:)','b"', " 'linewidth',2);
grid; set(gca, 'Xlim',[1,96])

250

20 40 60 80

XD signals are the denoised versions of the original signals in the row direction.

3-119

3 Discrete Wavelet Analysis

Denoise the XD signals in column direction

XX = mswden('densig','c',XD, 'db2',2, 'sqtwolog', 'sln');
Plot original signals X and the denoised signals XX as images.
figure;

subplot(1l,2,1); image(X)

subplot(1,2,2); image(XX)
colormap(pink(222))

20 40 60 80 20 40 60 80

1-D Multisignal Analysis Using the Wavelet Analyzer App

In this section, we explore the same signal as in the previous section, but use the Wavelet Analyzer
app to analyze it.

1 Start the Wavelet 1-D Multisignal Analysis Tool.
From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.

3-120

1-D Multisignal Analysis

4. Wavelet Analyzer -
File Window Help
One-Dimensional Specialized Tools 1-D
SWT Denoising 1-D
Wavelet 1-D
Density Estimation 1-D
Wavelet Packet 1-D
Regression Estimation 1-D
Continuous Wavelet 1-D
Wavelet Coeflicients Selection 1-D
Complex Continuous Wavelet 1-D)
Matching Pursuit 1-D
Two-Dimensional
Wavelet 2-D
Specialized Tools 2-D
Wavelet Packet 2-D
True Compression 2-D
Continuous Wavelet Transform 2-D
SWT Denoising 2-D
Three-Dimensional Wavelet Coefficients Selection 2-D
Wavelet 3-D Image Fusion
Multiple 1-D
Multisignal Analysis 1-D
Multivariate Denoising
Multizcale Princ. Comp. Analysis
. s e . . s .
Click Multisignal Analysis 1-D to open the Wavelet 1-D Multisignal Analysis tool.
B Wsclet 1.0 -~ Mulisignal Ansbysis s |[@l[=

File

Edt View Insert Tools Window Help

Salacton of Data

oot

The tool is divided into five panes. Two of them are the same as in all Wavelet Toolbox app tools,
the Command Frame on the right side of the figure and the Dynamic Visualization tool at the
bottom. The Command Frame contains a special component found in all multisignal tools: the

Selection of Data Sets pane which is used to manage two lists.

The three new panes are the Visualization of Selected Data pane, the Information on

Selected Data pane, and the Selection of Data pane.
2 Load the signals.

At the MATLAB command prompt, type

load thinker

3-121

3 Discrete Wavelet Analysis

In the Multisignal Analysis 1-D tool, select File > Import from Workspace > Import
Signals. When the Import from Workspace dialog box appears, select the X variable. Click OK
to import the data matrix and display the first signal.

The Selection of Data pane contains a list of selectable signals. At the beginning, only the
originally loaded signals are available. You can generate and add new signals to the list by
decomposing, compressing, or denoising original signals.

Each row of the list displays the index of selectable signal (Idx Sel), the index of original signal
(Idx Sig) and three wavelet transform attributes describing the process used to obtain the
selectable signal from the original one.

View the signals and signal information.
With signal 1 highlighted, Shift-click the mouse on signal 3 to select signals 1, 2, and 3.

Ctrl-click the mouse on signals 7, 9, and 11. (The Select ALL button at the bottom of the
Selection of Data pane selects all signals and the Clear button deselects all signals.)

The selected signals (1, 2, 3, 7, 9 and 11) appear in the Visualization of Selected Data pane.
The Information on Selected Data pane contains the box plots of the minimums, the means,
and the maximums of these signals.

4

3-122

Highlight a signal.

Using the Highlight Sel button in the lower-left corner of the Visualization of Selected Data
pane, select signal 3.

1-D Multisignal Analysis

— Yizualization of Selected Data

Selections indices: 1 2 3 7 9 11

S0 P
130
100

a0

10 20 30 40 50 60 7O 80 40
Highlight Sel

I 3 - I [©ne by one Plat ISuperimste hode j

5 Select Different Views.

In the Visualization of Selected Data pane, change the view mode using the pop-up in the

lower-right corner. Choose Separate Mode. The selected signals appear.

6 Decompose a multisignal.

Perform an analysis at level 4 using the db2 wavelet and the same file used in the command line

section: thinker.mat.

In the upper right portion of the Wavelet 1-D Multisignal Analysis tool, select db2 and level 4 in

the Wavelet fields.
Signals W 182x86]
Storage rOn e all
Wiigvelet s a] |2 -
Ext Mode EYM -]
Level 4 -
Decompose

Click Decompose. After a pause for computation, all the original signals are decomposed and

signal 1 is automatically selected

B Wavelet 10 - Mutisignal Amatys SIe=
File Edic View lnen Tools Window Help -
e — Sigrois X (152:58)
i (43000 basar (179427 winc 218000 | | irmge pcrrwice.

Setection b |
[| Enevar e Erverar ofios - Swanmi | Ve @ vz

1 [Eney | AB0SH6 | A4 (8847 EdMods =m ¥
100 1) Ll 4 x
o o [017% | oy [639% | oy (D58

w0 @ % 4 @ s 7 e w0 o [004% —

o D etory v asss o

3-123

3 Discrete Wavelet Analysis

In the Selection of Data pane, new information is added for each original signal — the
percentage of energy of the wavelet components (D1,...,D4 and A4) and the total energy. The
Information on Selected Data pane contains information on the single selected signal: Min,
Mean, Max and the energy distribution of the signal.

| Infarmation on Selection 1

Min | 43000 pean 179.427 | pax 215.000

—_Energy and Energy Ratios - Signal 1

Energy | 4.8092+08 Ad | 099429
D4 | 012% | p3 | 028% | pp | 0.13%

p1 | D04%

Since the original signals are decomposed, new objects appear and the Selection of Data Sets
pane in the Command Frame updates.

The Selection of Data Sets pane defines the available signals that are now selectable from the
Selection of Data pane.

Selection of Data

Signals Coefficients
AFP A -
APP 2 [l
AFPP 3 B
AP 4
MET A
Selected Data Sets

Orig. =ignals

The list on the left allows you to select sets of signals and the right list allows you to select sets of
corresponding coefficients: original signals (0rig. Signals), approximations (APP 1,...)and
details from levels 1 to 4 (DET 1,...).

In the list on the right, the coefficients vectors can be of different lengths, but only components
of the same length can be selected together.

After a decomposition the original signals (0rig. Signals) data set appears automatically
selected.

Select signals 1, 2, 3, 7, 9 and 11.

3-124

1-D Multisignal Analysis

[Wielet 1:D - Multisignal Analysis EEE=]
File Edit View [nset Tools ‘Window Help i
Visunkzation of Selected Dotn e "iaveiet Decomoostins Enery | 152:96)
Selectionindces 1 2 3 7 811 o St ull
- R — -
00 \ e
150 Ik I Jif v & T2 T
) -
o Iy i |||‘| E Edccs mym |
0 ,:_FJ,._\I,: | Lovel L] =
gL L i
10 20 W 40 s 60 70 &0 @ ecampose
Hishltt Sal CEEEE
lrere = ClOneby crePit - anorgy |V Apn. Ond.
Selechon of Data

() 1o 3

1o I ., 10!
101 |1 98.03% | 1.254 | O.57% | 0.06% | 0.09% |
101 1 || S7.73% | 1.66% | O.51% | 0.0L% | 0.05% | 4.
I 0 | ori || S7.06% | Z2.42% | 0.204% | 0.22% | 0.10% | 4.215e406 |
|0 1 ori || 57.084 | 2.384 | D274 | 0264 | 0.041 | &.L06et05 |
101 ora 12160 | 05DV | D.ZL% | 0,090 | 4042406 |
100 exd | 1 1.95% | O.58% | 0.22% | 0,06% | 3,398e406 |
10} ord | 1 1.74% | O.58 0.33% | 0.10% | 3.57Tet06 |
Vo ner o | 1les 107 1 3l303e008 1
10 ori | . 1 1.32v | 0.8% 0. . | 4.0l0et06 |
17 1 17 1 5 1 0) ori || S7.28% | 1.204 | O.83% | 0.53% | O0.15% | 4.053e+06 |
A8 1 L8 1 s 0 0 | ord |1 7,34 | 1,190 | 0.80% | O.48% | 0,19V | 4.006e406 | -
Mumber of Sig. - 152 vt (om0)Bono Ny 5 .| [SectALL](Cear [i=gon put
[E Ve)] [conter [El| An | P | |
- o 1 View Axes Cosn
| e 5] - Ve | P

The energy of selected signals is primarily concentrated in the approximation A4, so the box plot
is crushed (see following figure on the left). Deselect App. On/Off to see a better representation

of details energy (see following figure on the right).

oL=——

e =

[y D2 03 D4
Percentage of energy App.Ond..

7 Display multisignal decompositions.

In the Visualization of Selected Data pane, change the view mode using the pop-up below the
plots and select Full Dec Mode. The decompositions of the selected signals display.

o4 Decongese

D — Wavelet Decomoasfions Eneray ——
Decompostions al level 4 . — sz HGEEE
o : Sooge rowwiss v
H : \ .'f Weveist b =z -
s i ; sl EdMode sm v
1 H : | Il Leval 4 -
H H == L
— E ﬁ e e
0
a4 o D2 D3
Percentage of energy L] App. On..

Sedection of Data

200
150
100
50
200
100
0
50 A A Sefection of Dala I Sianals Coetficients
o o A e e -
dé \'—.}-Cf\\:’“ - Sei | Sig | Dw I L | Typ || 3P F L\PH
100 { P2 PP 3 m
T £PP3 lapp 4
50 {% . A lanoa e -
') S £ S S Selected Dat Sets
a3 50 ?‘ \" A Orig. Signals
50
i el
Ale—amit
d2 ° = ,'J_f L"}' o Statistics Chustering
50 L | Denoise Compress
(D T
n i ‘
a1 o il . < ot '
20 N W b Number of Sk 192
e =) “J L e st (A) insy)|
e v Full Dac: Mode v Levei4 ¥ Clear || Imgeort Past

FalEmE Ve H Hatory = = ”“‘"W” [oo]

3-125

3 Discrete Wavelet Analysis

Change the Level to 2.

Select the signal 7 in Highlight Sel.
Change the visualization modes.

Using the second pop-up from the left at the bottom of the pane, select Full Dec Mode (Cfs).
The coefficients of the decompositions of the selected signals display. At level k, coefficients are
duplicated 2k times.

Change the view mode to Stem Mode (Abs), and then change to Tree Mode. The wavelet tree
corresponding to the decompositions of the selected signals displays.

Select the level 4 and click the node a3. Then highlight signal 7.
Select Different Wavelet Components.

Ctrl-click Orig. Signals, APP 1, APP 3 and DET 1 to select these four sets of signals from the
list on the left in the Selection of Data Sets pane.

The total number of selected data (Number of Sig.) appears in the Selection of Data Sets
pane: four sets of 192 signals each is a total of 768 signals.

Selection of Data Sets
Signals Coefficients

(PP 1
PP 2
PP 3
PP 4
CET 1
LET 2

als

| v

Selected Data Sets
Wlany selections

Mumber of Sig. © 765

‘Sort Azc. | Desc. flldx Sig

Click the Asc. button in the Sort pane. The selected data are sorted in ascending order with
respect to the Idx Sig parameter

) Wavelet 1-D - Multisignal Analysis 1ol x]
Fie View Inset Toos \Windon Help ~
——— Visuaizstion of Selected Data e [T T
Signais thinker (15236)
win [43000 vean [175427 Max [215000 | | siorage fowmee 7]
&m Eneroy G Eneigy Ratos - SOna 1 | | yayeet B TP B
150 E
Erergy [4809er008 e [9.42% Exthode SV
100 Level I i
pa [012% s [026% D2 [015%
50
10 20 = 40 S0 60 7o 80 &0
P sl 1 [005% e
[2] onebyonepet f E
e —————————— Selection of Data Sets
Selection of Dats —_— Signals Coefficierts
[Pric sieras = [2p 1 =
Sel | sig | Dw | L | T
| Sig | Dw | L | Typ | ||l PP 2
T1 1010l = [5e 2 57 3
3l 10aiLilennt | e ee s
351 11al3 "
71 11401 " JpET 1 =l foer2 =l
21 zislo "
141 ziall " Selected Data Sets
31 2 1al3 " Wiary seleclions,
7251 zlall "
S0 3010 "
1351 31all "
3871 31al3 "
251 3 lall "
IR " Statstics Custering
1€ 1 4 lall "
3831 41al3 " Denoise Compress.
sE0 1 41 all "
s o sis10 "
1371 Elall "
3831 5ials "
sl Elall "
51 6110 "
1381 £ lall "
301 £1al3 "
E PR IR ™|
[number or sig. - 788 sort [HZE]| Dese. fiac sig j‘ Select ALL || Cear |l et |
Ko | ve kv ot x| v K= ==
] sl JEN | sy L] e es Closs,
o | o n V= =2

3-126

1-D Multisignal Analysis

Note that DWT attributes of each selectable signal have been updated where a stands for
approximation, d for detail and s for signal.

Click the Idx Sel 1 signal and then shift-click the Idx Sel 579 signal.

) Wavelet ultisignal Ar L[]

Fie View Insert Tools ‘window Help

T Vioualzation o

Selections indices: 1 193 385 577 2 194 386 578

200

100

0

10
Highight Sel

jhone =] ™ ©ne by one Plot [Buperimposs Mode =

VaVelet DeCoMpastons Enetgy

o 4

D4

Y
4|
40
4l
50
s
5
50
€1
€
61
P

|

[Wrberorse 7 | | st oo [oess farsg +]| | seectait | cew | i |

Signals thinker (192596)
Storage [fowwize =
vaver 2P]

ExtMode [y T

Level

o B
Decampose:

Selection of Data Sets
Signals Coefficierts

Selected Deta Sets

Wany selections

o v Love]

[
I] EC I

== oy n‘
on ‘

Wiz Axes |

Statistics Clustering

Dencise Compress:

Close

Choose Separate Mode.

) Wavelet 1-D — Multisignal As 98 [=]

Fie View Inserl Tools \Window Help

Selected Signals
! ——
we———————
&5 S~

ST

Telechions — "iaveiet Decompostions Eneray | ——

ot L

Percentage of eneray[~ Hpp. Oni..}

194

2 T —T Seedencibas

Sighals thinker (152x35)
Storage fowwise -
vavet [0 P]
ExdMode [5¥M T

Level I B

Decompose

Selection of Data Sets

I

578

135 —~\J«——-
387 ‘_‘/\—-

579

Sgrale Costicerts
- i - [Crig. Signals | frrrr -
Sel | 8ig | Dw | L | Typ | lare 1 fapp 2

T T 1 =107 0r Il = |4PP 2 [2PP 3

1% | 1l allloerill ﬁggi Sg’?

3851 1 1al3lorill

§77 1 Llal1]orll JoET 4 (=] Joet 2 =
i oz islo0ornll

el oz lalllerill Selected Deta Sets

386 1z 1al3lorill (e
57 1z lallorill

S0 aisiofornll

BEI 5 lalllerill

3871 3 1al3lorill

578 1 3@l lorill

a1 41z l0)an |l Statisties Custering
WE 4 el Ll erill

el disidien P
Ss01 4 1 a1l orill

S1 s isio0fornll

171 5 lalllerll

583 1 51 al3loerill

S35 iaiaern 7

Number of Sig - 768

20 3 4 s B0 70 80 80
Mode B

10
Highicit Sel
fpone = [Eeparcte

Sort | sc. | bese. fiux s =l

seectAll | oear | et |

I Gridon
xo | e [oee [center x| v | o L=
N I T =

Close

Ctrl-click to select two sets of signals from the right-most list of the Selection of Data Sets
pane: APP 1 and DET 1.

3-127

3 Discrete Wavelet Analysis

Selection of Data Sets

Signals Coefficients
iy, Signals al |&PPA -
APP 1 APP 2
APP 2 PP 3
APP 3 APP 4
PP 4 DET 1

DET 1 =l JoET 2 d

Selected Data Sets
I Mlany selections

Note that in this list of coefficients sets, the selected vectors must be of same length, which
means that you must select components of the same level.

Click the Asc. button in the Sort pane. The selected data are sorted in ascending order with
respect to Idx Sig parameter.

Select the ten first signals.

) Wavelet 1-D -~ Multisignal Analysis
Fie View Insen Tools \Window Help

I Viualzation of

Selectionsindices: 1 193 2 194 3185 4 195

300
200
100

o =
5 w0 s m 25w s W 8
g Sel
fore =] I one by one Pit Fuperiposstiose =]
B Selection of Data Sets
—————————— I Seednob@s —————————————————————— Signals Coefficients

[oricSigrers] AR =
o | R
ord = Jarr 2 Al
EINI=S v <
ori PP ¢ IET 1
ori JoeT 1 Jhd | 5 I |

“velet Decompostns Energy | ——
Signals thinker (192x35)
T Storage fowwise 7]
! Waveiet [P |3 [
EdMode [=
os =i P

— +
@ Decainpass
of b2 D3 D+

Percentage of eneray[~ app. Onl.

. P
TT Tlearlll

51 Tieail

21 zlealll

30 2geall

31 3lcallle

1951 3 0calllae Selected Datasets
N R Wary selections
1961 41|l

51 Slcallle

1971 5icalllae

61 eleallloe

1981 sleallle

71 7lcallle Statistics Clustering
19901 70caillae

2001 8leallle

51 5lcallle

2001 Sicaillae

101 100 eallle

2021 10| ealls

L 1lcallle

2031 111 calllae

121 1z eallle

sna 1 351 a1 in |

[Nornier of S5 384 ase. | Dese. flacsg 2| [seeetail | cear | |

o | v [ore = ==
B A o [| IR sty I e
] o =

10 Compress a multisignal.
The Wavelet Analyzer app features a compression option with automatic or manual thresholding.

Click Compress, located in the lower-right side of the window. This displays the Compression
window.

3-128

1-D Multisignal Analysis

) Wavelet 1-D - Multisignal Analysis - Compression

Fie View Inserl Tools ‘window Help

1 Storage: rowwise
et | @ [z
05 ExtMode i
Level 4
H\ghhgmnsel 02 o4 o8 o8 ! Select Carnpression method
Jrone | T one by ane it [Superimpose Mode - [Remove near 0
S | Compuie Threshelds and Perfo,
T 11 10 1 ori | j ALL Selected Reset
3] 3| s |0 I
11 odizioten _ Bl rue Thrshoi Turng |
: : j } z } E } } Heep Approximation © ves € no
31 81 s 101 I Type of thresholding ¢ soft & hard
w1 w0101 | G |
11 11| | 0| oxi |
B0l o Castiorts
Blnmicioiod ioe 2 ire s
grgliim 5 || RN
P41 P41 s 10l oaril Selected Data Sets
[moerorsg 182 | | Soi |Aso. |pese [jwsy]| semctaud | ceo [gt | T
_i_l_l el e el T e | &=
Note The tool always compresses all the original signals when you click the Compress button.
Before compressing, choose the particular strategy for computing the thresholds. Select the
adapted parameters in the Select Compression Method frame. Then, apply this strategy to
compute the thresholds according to the current method, either to the current selected signals
by clicking the Selected button, or to all signals by clicking the ALL button. For this example,
accept the defaults and click the ALL button.
| Selection of Data
Sig || ThrDl | ThrDZ | ThrD23 | ThrD4 | En. Bat.| NbE Rat. | |
1101 3.871 | 3.871 | 3.871 | 3.871 | 1l00.00% | &0.48% | -
z 11 4. 631 | 4. 631 | 4. 631 | 4. 631 | 93.99% | EO.48% |
201 3.831 | 3.831 | 3.831 | 3.831 | 100.00% | &0.48% |
4 |1 4 166 | 4 166 | 4 166 | 4 166 | 93.99% | EO.48% |
E 1l 4 455 | 4 455 | 4 455 | 4 455 | 93.99% | EO.48% |
& 11 3.733 | 3.733 | 3.733 | 3.792 | 1l00.00% | &0.48% |
701 3630 | 3630 | 3630 | 3.630 | 100.00% | &0.48% |
211 4. 407 | 4. 407 | 4. 407 | 4. 407 | 93.99% | EO.48% |
201 3.5368 | 3.5368 | 3.5368 | 3.536 | 100.00% | &0.48% |
o |l 3.8E3 | 3.8E3 | 3.8E3 | 3.5E2 | 100.00% | E0.48% |
11 |1 3.8E9 | 3.8E9 | 3.8E9 | 3.8E9 | 93.99% | EO.48% |
1z |1 3.EEL | 3.EEL | 3.EEL | 3.£51 | 100.00% | &0.48% |
12 11 3.8E0 | 3.8E0 | 3.8E0 | 3.8E0 | 93.99% | EO.48% |
14 || 4_0F8 | 4_0F8 | 4_0F8 | 4_0F8 | 93.99% | EO.48% |
15 |1 3635 | 3635 | 3635 | 3635 | 93.99% | EO.48% |
16 |1 4. 408 | 4. 408 | 4. 408 | 4. 408 | 93.99% | EO.48% |
17 11 4108 | 4108 | 4108 | 4_10%2 | 100.00% | &0.48% |
12 |1 4 518 | 4 518 | 4 518 | 4 518 | 93.99% | EO.48% |
13 |1 4287 | 4287 | 4287 | 4287 | 93.99% | EO.48% |
zo |1 3.730 | 3.730 | 3.730 | 3.730 | 93.99% | EO.48% |
zl |1 4770 | 4770 | 4770 | 4770 | 93.99% | EO.48% |
zZZ |1 4 513 | 4 513 | 4 513 | 4 513 | 93.99% | EO.48% |
z2 11 4_915 | 4_915 | 4_915 | 4_915 | 93.99% | EO.48% |
74 11 4 311 1 4 311 1 4 311 1 4 311 1 99 99% | EN 4R8% | LI
Murnber of Sig. : 192 | Sort Asc. | Desc. Ildx Sig vl Select ALL | LE{Ear | Itripatt Part |

The thresholds for each level (ThrD1 to ThrD4), the energy ratio (En. Rat.) and the sparsity

ratio (NbZ Rat.) are displayed in the Selection of Data pane.

Click the Compress button at the bottom of the Thresholding pane. Now you can select new
data sets: compressed Signals, the corresponding approximations, details and coefficients.

Press the Ctrl key and click the Compressed item in the left list of the Selection of Data Sets
pane. The original signals and their compressed versions are selected (2 x 192 = 384 signals).

3-129

3 Discrete Wavelet Analysis

Click the Asc. button at the bottom of the Selection of Data pane to sort the signals using Idx
Sig number.

With the mouse, select the first four signals. They correspond to the original signals 1, 2 and the
corresponding compressed signals 193, 194.

—] Wigualization of Selected Data

Selections indices: 1 193 2 194

200

130

100

50

10
Highlight Sel
Inone - I [~ Ore by one Plot ISuperimpose lode j

Click the Close button to close the Compression window.
11 Denoise a multisignal.
The Wavelet Analyzer app offers a denoising option with either a predefined thresholding

strategy or a manual thresholding method. Using this tool makes very easy to remove noise from
many signals in one step.

Display the Denoising window by clicking the Denoise button located in the bottom part of the
Command Frame on the right of the window.

) Wavelet 1-D -- Multisignal Analysis - Denoising
Fie View Inseit Toos Windon Help

[Vieuarzaion ot
Signals thinker (152x36)
1 Storage rowwise
Wavelet & 2
s Ext Mode i
Level 4
o Trresholding
[02 04 [0E 1
Highignt el Select thresholding method
[ore -] I onebyanepiat [Fuperimposeioze |+ [Fecedt torm threshoid -
SeTection o7 Data e Select noise structure
[Scatect whte noise: B
Sel | sig | Du | L | Typ | |
Compue thresholds
TT 17s101 T S
21 ziiiol | A Selected | Reset
51 31101 |
AR 1 Enable Manal Threshold Tuning
s1 slslal |
Lol e e Keop doprorinion yes o
S0 505100 oril Type otthvesholding & sott © hard
101 101 s 00| oril
L0 110 g0 | eri |
121 121500 om | Dencise
W olisiaol i
T s iol |
e 1z d0 | Selection of Data Sets
€1 181101 i Sigrals Coetficierts
s ial i
e 18 1s o0l | 7 | B =
11 151 : 101 | PP 1 lopp 2
201 201510 i Jape 2 fore 5
211 211 s 101 i Jupp 3 lorp
221 zz | s 10| oril Jap 4 oET 1
230 230 s 00| ori | =il e = foer 2 =l
541 D4 1o 101 neil
Selected Data Sets
Nurber of Sig - 192 sot |_Asc. | Dese. ffuxsig B ‘ Select ALLI Clear, | iz P | T

| e s Certer R I x= ==
T o el "] MY T iew) s Close

A number of options are available for fine-tuning the denoising algorithm. For this example,
accept the defaults: soft type of thresholding, Fixed form threshold method, and Scaled
white noise as noise structure.

Click the ALL button in the Thresholding pane. The threshold for each level (ThrD1, ..., ThrD4)
computes and displays in the Selection of Data pane.

3-130

1-D Multisignal Analysis

Selection of Data

I
Sig || ThrDl | ThrDZ | ThrD3 | ThrD< | ‘
L | 13.23% | 13.235 | 13.2395 | 13.285 | -
Z || 15.449 | 15.44% | 15.449 | 15 449 |
3 || 1Z.365 | 1Z_ 365 | 1Z_365 | 1Z_365 |
4 || 17.006 | 17.006 | 17.006 | 17.006 |
S 11 11.13¢4 | 11.1%4 | 11.134 | 11.1584 |
& || 13.107 | 123.107 | 13.107 | 13.107 |
7ol 12 166 | 1Z. 166 | 1Z.166 | 1Z_166 |
S | 17.748 | 17.748 | 17.748 | 17.748 |
11 7.88l | 7.8l | 7.88l | 7.881 |
10 || 12.794 | 1Z.7%4 | 12.794 | 12.734 |
11 || 1Z.zo® | 12.Z08 | 1z.20& | 1Z2.Z08 |
1z || 11.351 | 11.351 | 11.351 | 11.3581 |
13 || 12.794 | 12.784 | 1Z.794 | 12.784 |
14 || 15.0Z0 | 1&5.020 | 15.02Z0 | 15.020 |
18 || 12.721 | 12 721 | 1z.7Z1 | 12.721 |
le || 18.020 | 18.0Z0 | 1&.020 | 18.020 |
17 || 16.107 | 16.107 | 16.107 | 1&.107 |
18 || 16.4Z0 | 1&.420 | 16.4Z0 | 16.420 |
12 || 16.8%1 | 16.831 | 16.831 | 16.8381 |
Z0 || 12.365 | 12.365 | 1z.365 | 1Z2.365 |
2l || 16.831 | 16.881 | 16.831 | 15.881 |
2z || 15.13& | 15.13& | 15.135 | 15.135 |
23 || 18.647 | 18.647 | 18.647 | 18.647 | LI
74 |1 14 AR4 | 14 AAd | 14 AAR4 | 14 ARd I
Murmber of Sig. : 192 | Sort | Asc. | Desc. Ildx Sig 'I Select ALL | ClEar | It e |

Then click the Denoise button at the bottom of the Thresholding pane.

Ctrl-click the Denoised item in the list on the left of the Selection of Data Sets pane. The
original signals and the corresponding denoised ones are selected (2 x 192 = 384 signals).

Click the Asc. button at the bottom of the Selection of Data pane to sort the signals according
to the Idx Sig parameter.

With the mouse, select the first four signals. They correspond to the original signals 1, 2 and the
corresponding denoised signals 193, 194

— Wisualization of Selected Deta

Selections indices: 1 183 2 194

200 ==t
150
100

50

[Superimpoze Mode - I

10
Highlioht Sel
rone = | T One by one Plot

Choose Separate Mode.

) Wavelet 1-D - Multisignal Analysis - Denoising

Fie View Insen Tools Window Help -
EEEEES N T
EBE IONIDH Signais thinker (162¢36)
Selected Sancis Sal | Sig | Dv 1 L | Top | —
Storage Towwie
T T Erorem 1 2
1931 10 =001 deal avsiet & 2
1 E 1 zisiofomnl
196 1 2100 am | EdMede | oM
31 alsiofonl
1951 3 1= 001 denl Lovel 4
S0 41 s1o00oml
19 | 415001 aem |
SloilTlg) e Thresholding
170 e c ol den Select threshalding method
193 B 195 | 61101 am | Fixed form thresnoa B
71 70 s10onl
1990 71 s 001 den | Select naise structure
G1 s 1s1o00oml
bl Bzl [Ecated whta oiss -
S s isiofonl
Wl ilzloten Compute tivesholis
100 1015001 ol AL | Selected | Resst
20z | 1015001 aen |
. | 1L0 110500 et
203 | 110 =001 den | Enakle Manual Threshold Turing
1z 0 1z =001 orl
208 | 1215001 aen |
13 | 13 | s | O | ori | Heep Approximation % ves (" no
205 | 13 15001 den |
I e) Gy Type ot trvesholding & soft hard
205 | 1415001 aen |
15| 15 s 00| ot ——
207 | 1515001 den |
184 E 161 I6 1 =101 ol
205 | T6 15101 aen |
e e s o) e Selection of Data Sets
2091 1712101 dem Sigrals Costficerts
18 | 18 | s | O | ori | Denci=ed | G -
201 I8 1= 001 aen | Devcare 1 oor
o 1srsioen PR BE
211 | 19 1= 00 | den | SR | ni
Nember of Sig - 364 b 6P 3 b 1
EN S S S SN S S S—" encert [=ljoer2 |
0 2 30 4 & e 70 60 80 T B =
Highiit Sel [e, | Selected DataSets
rone = [Separate tiode] ~cigon soectall || ciear | Fnpriiat | Wiary selections

X [Ye [xve = e
x_iv_fvi Ceter MH Info l+ History —(!—I V\eWAxesl Close

3-131

3 Discrete Wavelet Analysis

12 To view residuals, Ctrl-click the Orig. Signal, the Denoised and the Residuals items in the
list on the left of the Selection of Data Sets pane. Original, denoised and residual signals are
selected (3 x 192 = 576 signals).

Click the Asc. button at the bottom of the Selection of Data pane to sort the signals using the
Idx Sig parameter.

With the mouse, select the first six signals. They correspond to the original signals 1, 2, the
corresponding denoised signals 193, 194 and the residuals 385, 386.

Then, choose Separate Mode.

) Wavolet 1-D -~ Multisignal Analysis - Denoising
Fie View Insen Tools Window Help ~
v T e — S —
Selecton of Jefs Signals thinker (19236)
Selected Signals Sel | Sig | Dv | L | Tym | ‘
Storage rowe
T1 I1=10]or
; | 195 1 1000 dm vaeet | @ [2
S5 10zi01
z| z|s|o] Ext Mode: sym
a2z isl01
G861z 1zl01 Level 4
S1osisiol
s 3=l
e I Thresholdng
183 4 1 &1slol Select threshalding riethod
e 4zl
a3 | 4 1ci0] Fixedt torm thresnoa =
1 51s10]or
1571 51 =100 as Select noise structure
330 5 1ci0l re
A [Sosledt white roiss E
151 61 =101 dm
el sl Computethresholds
a5 7170 ci0]or AL | Selected | Resst
1331 71 =10 de
2] L0 7 1s10] re
&1 s1slo0lor Enakle Manual Threshald Turing
200 1 812101 dm
3321 81 =10 re
31 315101 ori Keep Approximation & yes ' no
2000 512101 dm
Ere R A I e i Tyge ofthresholding & soft ¢ hard
101 101210 or
(2 4 [Pick orie or more datain the i =2 Denaise
1L 117100 er
203 | 11| =10 de
I I s Selection of Data Sets
1z 1z s 100 oer Signals Cosficierts
2041 1z 0=101 SRR | T =
361 12 1=10] bEN DET 1 fopp 2
181 181510 ord IDEN-ET 2 &
£ 205 1 13 1 s 101 am pEhere i
Nember of Sig £ 575 bEnDET 4 e 1
T m w0 4w & 7w e RESEEERIE focr 2 =
#so. | peso. x5 -
ichiitt Sel son | bso. [Besa foSu T Seiscted Data Sets
rone = [Geparate Mode | reien e e | Wany selochions
X | e [xve 5 BE
) R = e g by L[
o | v (o] o = =

13 Click Close to close the denoising tool. Then, click the Yes button to update the synthesized

signals.

. Multizignal Denoising

Update Synthesized Signals ?

es I

[{a] | Cancel |

| 7] x|

Manual Threshold Tuning

1 Choose a method, select one or several signals in the Selection of Data pane using the mouse
and keys. Then click the Selected button. You can select another group of signals using the same
method. Press the Denoise button to denoise the selected signal(s).

3-132

1-D Multisignal Analysis

Thresholding
Select thresholding method
IMinimax d
Select noize structure
IScaIed white noise d

Compute thresholds
AL | Sslectsd | Reset |

i Enable Manual Threshold Tuning |

Kesp Approvimation % yes no
Type of thresholding & soft ¢ hard

Denoize |

You can also use manual threshold tuning. Click the Enable Manual Thresholding Tuning
button.

) Wavelet 1-D - Multisignal Analysis - Densising 9 [=] B3
Fie View Inseit Tools Window Help ~

Vrvalzalion of Deeammasors e —
— Signais thinker (152¢36)
Decampasitions at level 4 #ig |1 TheDl | TheDZ | TheD3 | ‘
== Storage Towwise

00 T (1 12.168 | €356 [4 .
150 z 0114127 | 76201 3 Wayvekt do 2
s 301 3.157 | 4067 | 2
S FRT Rt i ——
50
& 11 13.107 | 13.107 | 13 Level 4
800 o
& 11 17.748 | 17.748 | 17 ——
600 9 || 7.88L | 7.88L | 7 resholding
cad o 10011 120734 1 12.754 | 12 Select thresnolding method
1111 1zizos | 1z.z0s | 1z
200 1z 01 1103511 1103511 11 poinima: -
1z || 12.784 | 120784 | 12

100 14] 15.020 | 15.020 | 1§ Select noise strusiure.

15 01 1zi7zL 01z | 1z
1€ || 18.0z0 | 13.020 | 18 [Sealed white noise -
o
cod IR it Compute tresholis

19 |1 16.891 | 16.891 | 16 Seiccizd

100
22 11 15.135 | 15.135 | 15 Disable Marwal Threshole Tuning
23 || 18.647 | 18.647 | 18

26 1) 17,048 | 17,048 | 17 en Lot yes: i
100 26 11 110075 | 11075 | 11
27 11 13633 | 13633 | 13 Type o eS| 8ot o e
s 11 21103 | 21108 | 21
s 28 || 15.334 | 15.334 | 15 Dengise
30011 16,335 | 18.335 | 18
cd2 © 3L 11 19.93z | 19.93z | 19
- 3z 11 13.zed | 13.z6¢ | L3
BT - I e Thieshod Turing
o 35 11 11623 | 11623 | L1
L P e e R |
cdl ”r ETSSS—— > ssecteatevs I <
Number of Sig - 192
- 2 Threshold value 121576

20 40 60 E

E e o
e Updiste Threshalds
pere = ren T Turing 00 o] feveis = seectall | cear | i |
Close

X | e [V][conter X [v | == ==
o [T o W || i —

View Axes |

The horizontal lines in the wavelet coefficient axes (cd1, ..., cd4) can be dragged using the
mouse. This may be done individually, by group or all together depending on the values in the
Select Signal and Selected Level fields in the Manual Threshold Tuning pane.

— tanual Threshold Turing —

Select Signal |3 - I
Selected Level |2 e I
Threshald value I 4251011

Update Thresholds |

2 In the Wavelet 1-D Multisignal Analysis Compression tool, you can use two methods for threshold
tuning: the By level thresholding method which is used in the Wavelet 1-D Multisignal Analysis
Denoising tool, and the Global thresholding method.

3-133

3 Discrete Wavelet Analysis

Fie View Inset Tools Window Help -
I = T —
SEEEEED Signais thinker (162¢36)
Selected St Sig [I TheDl | TheD2 | Thadd |
- == Storage Towwise
20 T oselze o selze ol -
z || 0000 | 0.000 | oD & z
150 511 e20.656 | 620,658 | &
- 411 0000 | 0.000 | Eamose | ovm
5 11 144.205 | 1edlz0s | 1
Sl o000 | o000 | el [4
EY 201 0000 | 0.000 |
& 11 0000 | 0lo00 |
0 2 a0 40 S 60 70 81 @ S oo oo Threshaling
Compressed Signals T el e Select Compression methad
- 1z 11 olooo | olooo | [Botence spersity-rom B
20 1301 olooo | olooo |
1401 olooo | olooo | i i)
150 1s 0 olooo | olooo |
15 11 olooo | olooo |
100 17 11 0.000 | 0.000 | Compuie Threshelds and Perfo,
1s 1| olooo | olooo |
= 15 1 olooo | olooo | Selected
2011 olooo | olooo |
21 0looo | 0lo00
i & @ D @D B WD @ R Disskle Manual Threshold Turing
23 01 olooo | olooo |
Ensray & b, Zeros Performances 21l om0l 000 | [-
* =T 25 11 olooo | olooo |
i ¢ 0 aeenl haen Tipe e hrestoling)) 8ot 46 hard
; ANt z7 11 o0.000 | 0.000 |
s 11 olooo | olooo | el |
x 2% || 0.000 | 0.000 |
30 0looo | olooo
&0 S el Gl [e Threshod Tunng
t S0 oo | olooo |
P %0l oooo | oloo | [Gickal threshalding -
350 olooo | olooo |
3501 olooo | olooo | sobctsgral ! =
56 11 olooo | olooo | s ;
& R Threshokvalue [0912830
0 Nomber of 5ig.: 192 Lopert.percert. | 9851 | %
00 200 300 400 €00 600 700 80D
Threshokt Sort_#s0. | osse [loxs NOPerf Percert. | 9200 | %
Hichict Sel
pore e Thr Toring (608) 7] ¥ Gnon soectALL | coar | irpotat | Upaite Thrssholds.|

e | v |

v e |

Certer

o Info

=

==

Glose

You can drag the vertical lines in the Energy and Nb. Zeros Performances axes using the
mouse. This can be done individually or all together depending on the values of Select Signal in

the Manual Threshold Tuning pane.

) Wavelet 1-D - Multisignal An - Compression 9 [=] B3
Fie View Inse Tools Window Help -
Selections 4'—7
Seection of Dafa Signais thinker (192x36)
Selected Signals #ig |1 TheDl | TheD2 | TheD3d | [—
== Storage Towwie
200 L1 89.1z8 | 89.128 | 4
z 11 o000 | ©0.000 | Wavelet